




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB等于()度.A.42 B.48 C.46 D.502.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)3.如图,厂房屋顶人字架(等腰三角形)的跨度BC=10m,∠B=36°,D为底边BC的中点,则上弦AB的长约为()(结果保留小数点后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.3.6m B.6.2m C.8.5m D.12.4m4.以下五个图形中,是中心对称图形的共有()A.2个 B.3个 C.4个 D.5个5.下列事件为必然事件的是()A.打开电视机,它正在播广告B.a取任一个实数,代数式a2+1的值都大于0C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上6.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°7.下列说法中,不正确的是()A.所有的菱形都相似 B.所有的正方形都相似C.所有的等边三角形都相似 D.有一个角是100°的两个等腰三角形相似8.二次函数的图象是一条抛物线,下列说法中正确的是()A.抛物线开口向下 B.抛物线经过点C.抛物线的对称轴是直线 D.抛物线与轴有两个交点9.在一个不透明的盒子里装有个黄色、个蓝色和个红色的小球,它们除颜色外其他都完全相同,将小球摇匀后随机摸出一个球,摸出的小球为红色的概率为()A. B. C. D.10.两个相似多边形的面积比是9∶16,其中小多边形的周长为36cm,则较大多边形的周长为)A.48cm B.54cm C.56cm D.64cm11.已知函数的部分图像如图所示,若,则的取值范围是()A. B. C. D.12.某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为().A. B. C. D.二、填空题(每题4分,共24分)13.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角为__________.14.若二次函数y=x2+x+1的图象,经过A(﹣3,y1),B(2,y2),C(,y3),三点y1,y2,y3大小关系是__(用“<”连接)15.如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为___________.16.如图,一次函数与反比例函数的图象分别是直线和双曲线.直线与双曲线的一个交点为点轴于点,则此反比例函数的解析式为_______________.17.如果一元二次方程经过配方后,得,那么a=________.18.如图,函数y=的图象所在坐标系的原点是_______.三、解答题(共78分)19.(8分)教材习题第3题变式如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.20.(8分)在平面直角坐标系中的位置如图所示.在图中画出关于轴对称的图形,并写出顶点的坐标;将向下平移个单位长度,再向左平移个单位长度得到,画出平移后的,并写出顶点的坐标.21.(8分)如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.(1)填空:若∠BAF=18°,则∠DAG=______°.(2)证明:△AFC∽△AGD;(3)若=,请求出的值.22.(10分)有两个不透明的袋子,甲袋子里装有标有两个数字的张卡片,乙袋子里装有标有三个数字的张卡片,两个袋子里的卡片除标有的数字不同外,其大小质地完全相同.(1)从乙袋里任意抽出一张卡片,抽到标有数字的概率为.(2)求从甲、乙两个袋子里各抽一张卡片,抽到标有两个数字的卡片的概率.23.(10分)如图1,抛物线与轴交于点,与轴交于点.(1)求抛物线的表达式;(2)点为抛物线的顶点,在轴上是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;(3)如图2,位于轴右侧且垂直于轴的动直线沿轴正方向从运动到(不含点和点),分别与抛物线、直线以及轴交于点,过点作于点,求面积的最大值.24.(10分)如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)25.(12分)一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).(1)小红摸出标有数3的小球的概率是.(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.(3)求点P(x,y)在函数y=﹣x+5图象上的概率.26.如图方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向上平移3个单位长度,画出平移后的△A1B1C1;(2)写出A1,C1的坐标;(3)将△A1B1C1绕B1逆时针旋转90°,画出旋转后的△A2B1C2,求线段B1C1在旋转过程中扫过的面积(结果保留π).
参考答案一、选择题(每题4分,共48分)1、A【分析】连接AB,由圆周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性质即可得出答案.【详解】解:连接AB,如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故选:A.【点睛】本题考查了圆周角定理以及直角三角形的性质;熟练掌握圆周角定理是解题的关键.2、C【解析】直接利用位似图形的性质得出对应点坐标乘以得出即可.【详解】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选C.【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.3、B【分析】先根据等腰三角形的性质得出BD=BC=5m,AD⊥BC,再由cosB=,∠B=36°知AB=,代入计算可得.【详解】∵△ABC是等腰三角形,且BD=CD,∴BD=BC=5m,AD⊥BC,在Rt△ABD中,∵cosB=,∠B=36°,∴AB==≈6.2(m),故选:B.【点睛】本题考查解直接三角形的应用,解题的关键是根据等腰三角形的性质构造出直角三角形Rt△ABD,再利用三角函数求解.4、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【详解】解:从左起第2、4、5个图形是中心对称图形.故选:B.【点睛】本题考查了中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.5、B【分析】由题意直接根据事件发生的可能性大小进行判断即可.【详解】解:A、打开电视机,它正在播广告是随机事件;B、∵a2≥0,∴a2+1≥1,∴a取任一个实数,代数式a2+1的值都大于0是必然事件;C、明天太阳从西方升起是不可能事件;D、抛掷一枚硬币,一定正面朝上是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.注意掌握必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、C【解析】试题解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C.考点:解直角三角形的应用.7、A【分析】根据相似多边形的定义,即可得到答案.【详解】解:A、所有的菱形都相似,错误;B、所有的正方形都相似,正确;C、所有的等边三角形都相似,正确;D、有一个角是100°的两个等腰三角形相似,正确;故选:A.【点睛】本题考查了相似多边形的定义,熟练掌握相似多边形的性质:对应角相等,对应边成比例是解题的关键.8、D【分析】根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2-1=0解的情况对D进行判断.【详解】A.
a=2,则抛物线y=2x2−1的开口向上,所以A选项错误;B.当x=1时,y=2×1−1=1,则抛物线不经过点(1,-1),所以B选项错误;C.抛物线的对称轴为直线x=0,所以C选项错误;D.当y=0时,2x2−1=0,此方程有两个不相等的实数解,所以D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.9、D【分析】让红球的个数除以球的总个数即为所求的概率.【详解】解:∵盒子中一共有3+2+4=9个球,红色的球有4个∴摸出的小球为红色的概率为故选D【点睛】此题主要考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2.大多边形的周长为2cm.故选A.考点:相似多边形的性质.11、C【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,1),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,1),∴抛物线与x轴的另一个交点为(−3,1),∴当−3<x<1时,y>1.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.12、D【分析】利用十字路口有红、黄、绿三色交通信号灯,遇到每种信号灯的概率之和为1,进而求出即可.【详解】解:∵十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,∴他遇到绿灯的概率为:1−−=.故选D.【点睛】此题主要考查了概率公式,得出遇到每种信号灯的概率之和为1是解题关键.二、填空题(每题4分,共24分)13、120【分析】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.根据面积关系可得.【详解】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R=3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=解得n=120°.故答案为:120°.【点睛】考核知识点:圆锥侧面积问题.熟记弧长和扇形面积公式是关键.14、y3<y1=y1.【分析】先将二次函数的一般式化成顶点式,从而求出抛物线的对称轴,然后根据二次函数图象的对称性和增减性判断即可.【详解】∵y=x1+x+1=(x+)1+,∴图象的开口向上,对称轴是直线x=﹣,A(﹣3,y1)关于直线x=﹣的对称点是(1,y1),∴y1=y1,∵﹣<<1,∴y3<y1,故答案为y3<y1=y1.【点睛】此题考查的是二次函数的增减性,掌握二次函数图象对称轴两侧的对称性和增减性是解决此题的关键.15、【分析】根据题意可知扇形ABC围成圆锥后的底面周长就是弧BC的弧长,再根据弧长公式和圆周长公式来求解.【详解】解:作于点,连结OA、BC,∵∠BAC=90°∴BC是直径,OB=OC,,圆锥的底面圆的半径故答案为:【点睛】本题考查了扇形围成圆锥形,圆锥的底面圆的周长就是原来扇形的弧长,找到它们的关系是解题的关键.16、【分析】根据题意易得点A、B、D的坐标,再利用待定系数法求出直线AB的解析式,进而可得点C坐标,然后根据待定系数法即可求得结果.【详解】解:由已知,得,设一次函数解析式为,因为点A、B在一次函数图象上,,解得:,则一次函数解析式是,因为点在一次函数图象上,所以当时,,即,设反比例函数解析式为,∵点在反比例函数图象上,则,所以,∴反比例函数解析式是.故答案为:.【点睛】本题考查了待定系数法求一次函数和反比例函数的解析式以及函数图象上点的坐标特征,属于基础题型,熟练掌握待定系数法求解的方法是解题的关键.17、-6【解析】∵,∴,∴a=-6.18、M【分析】由函数解析式可知函数关于y轴对称,即可求解;【详解】解:由已知可知函数y=的图象关于y轴对称,所以点M是原点;
故答案为:M.【点睛】本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.三、解答题(共78分)19、见解析【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,根据等角对等边可得AF=DF,再根据邻边相等的四边形是菱形可得结论.【详解】证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠FDA,∴AF=DF,∴四边形AEDF是菱形.【点睛】此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.20、(1)作图见解析,;(2)作图见解析,【分析】(1)先根据点的对称性,画出三点的位置,再顺次连接即可得;最后根据三点在网格中的位置可得它们的坐标;(2)根据点坐标的平移,先画出三点的位置,再顺次连接即可得;最后根据三点在网格中的位置可得它们的坐标.【详解】(1)先画出三点的位置,再顺次连接即可得,作图结果如图所示:观察图形可知:顶点的坐标分别为;(2)先画出三点的位置,再顺次连接即可得,作图结果如图所示:观察图形可知:顶点的坐标为,即.【点睛】本题考查了点的对称性与平移,读懂题意,掌握在平面直角坐标系中作图的方法是解题关键.21、(1)27;(2)证明见解析;(3)=.【分析】(1)由四边形ABCD,AEFG是正方形,得到∠BAC=∠GAF=45°,于是得到∠BAF+∠FAC=∠FAC+∠GAC=45°,推出∠HAG=∠BAF=18°,由于∠DAG+∠GAH=∠DAC=45°,于是得到结论;(2)由四边形ABCD,AEFG是正方形,推出==,得=,由于∠DAG=∠CAF,得到△ADG∽△CAF,列比例式即可得到结果;(3)设BF=k,CF=2k,则AB=BC=3k,根据勾股定理得到AF===k,AC=AB=3k,由于∠AFH=∠ACF,∠FAH=∠CAF,于是得到△AFH∽△ACF,得到比例式即可得到结论.【详解】解:(1)∵四边形ABCD,AEFG是正方形,∴∠BAC=∠GAF=45°,∴∠BAF+∠FAC=∠FAC+∠GAC=45°,∴∠HAG=∠BAF=18°,∵∠DAG+∠GAH=∠DAC=45°,∴∠DAG=45°﹣18°=27°,故答案为:27.(2)∵四边形ABCD,AEFG是正方形,∴=,=,∴=,∵∠DAG+∠GAC=∠FAC+∠GAC=45°,∴∠DAG=∠CAF,∴△AFC∽△AGD;(3)∵=,设BF=k,∴CF=2k,则AB=BC=3k,∴AF===k,AC=AB=3k,∵四边形ABCD,AEFG是正方形,∴∠AFH=∠ACF,∠FAH=∠CAF,∴△AFH∽△ACF,∴,∴==.【点睛】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,找准相似三角形是解题的关键.22、(1);(2)抽到标有两个数字的卡片的概率是.【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数和抽到标有3、6两个数字的卡片的情况数,然后根据概率公式即可得出答案.【详解】(1)乙袋子里装有标有三个数字的卡片共3张,则抽到标有数字的概率为;故答案为:;(2)根据题意画图如下:共有种等情况数,其中抽到标有两个数字有种,则抽到标有两个数字的卡片的概率是.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、(1);(2)不存在,理由见解析;(3)最大值为.【分析】(1)利用待定系数法求出解析式;(2)设点N的坐标为(0,m),过点M做MH⊥y轴于点H,证得△MHN∽△NOB,利用对应边成比例,得到,方程无实数解,所以假设错误,不存在;(3)△PQE∽△BOC,得,得到,当PE最大时,最大,求得直线的解析式,设点P的坐标为,则E,再求得PE的最大值,从而求得答案.【详解】(1)把点A(-2,0)、B(8,0)、C(0,4)分别代入,得:,解得,则该抛物线的解析式为:;(2)不存在∵抛物线经过A(-2,0)、B(8,0),∴抛物线的对称轴为,将代入得:,∴抛物线的顶点坐标为:,假设在轴上存在点,使∠MNB=90,设点N的坐标为(0,m),过顶点M做MH⊥y轴于点H,∴∠MNH+∠ONB=90,∠MNH+∠HMN=90,∴∠HMN=∠ONB,∴△MHN∽△NOB,∴,∵B(8,0),N(0,m),,∴,∴,整理得:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中级导游证考试试题中级导游证考试试题及答案
- 2025年医师定期考核试题及答案(皮肤病试题)
- 2025年《用电与消防》安全生产知识竞赛培训试题库及答案
- 光伏组件回收技术创新路径探索考核试卷
- 2025车工(初级)理论知识考试试题及答案
- 护士病房管理办法
- 2024年新疆疏附县卫生高级职称(卫生管理)考试题含答案
- 建材园区管理办法
- 抚恤补助管理办法
- 新疆产假管理办法
- 2025版一致行动人协议模板
- 理疗店合伙协议合同范本
- 广西畜禽养殖管理办法
- 教师数字素养提升实施方案
- 2025发展对象培训班考试试题及参考答案
- 呼吸内科专科建设
- 物业合同履约管理办法
- 电气监理工程师培训课件
- 油画创作教学课件
- 2025年南京市中考数学真题试卷
- GB/T 9163-2001关节轴承向心关节轴承
评论
0/150
提交评论