下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一次函数y=﹣3x+b图象上有两点A(x1,y1),B(x2,y2),若x1<x2,则y1,y2的大小关系是()A.y1>y2 B.y1<y2C.y1=y2 D.无法比较y1,y2的大小2.一元二次方程x2-2x=0根的判别式的值为()A.4 B.2 C.0 D.-43.计算的结果是()A. B. C. D.4.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A. B. C. D.5.如图所示,已知圆心角,则圆周角的度数是()A. B. C. D.6.在同一平面上,外有一定点到圆上的距离最长为10,最短为2,则的半径是()A.5 B.3 C.6 D.47.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有()A.1个 B.2 C.3个 D.4个8.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A. B. C. D.9.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是()A.9m B.12m C.8m D.10m10.如图是二次函数y=ax2+bx+c(a≠1)的图象的一部分,给出下列命题:①a+b+c=1;②b>2a;③方程ax2+bx+c=1的两根分别为﹣3和1;④当x<1时,y<1.其中正确的命题是()A.②③ B.①③ C.①② D.①③④11.如图,反比例函数y=与y=的图象上分别有一点A,B,且AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,若矩形ABCD的面积为8,则b﹣a=()A.8 B.﹣8 C.4 D.﹣412.方程x(x﹣1)=0的根是()A.x=0 B.x=1 C.x1=0,x2=1 D.x1=0,x2=﹣1二、填空题(每题4分,共24分)13.抛物线y=2x2﹣4x+1的对称轴为直线__.14.若,则的值为_____.15.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.16.如图,以矩形ABCD的顶点A为圆心,线段AD长为半径画弧,交AB边于F点;再以顶点C为圆心,线段CD长为半径画弧,交AB边于点E,若AD=,CD=2,则DE、DF和EF围成的阴影部分面积是_____.17.□ABCD的两条对角线AC、BD相交于O,现从下列条件:①AC⊥BD②AB=BC③AC=BD④∠ABD=∠CBD中随机取一个作为条件,可推出□ABCD是菱形的概率是_________18.若关于x的方程有两个不相等的实数根,则a的取值范围是________.三、解答题(共78分)19.(8分)如图,A,B,C三点的坐标分别为A(1,0),B(4,3),C(5,0),试在原图上画出以点A为位似中心,把△ABC各边长缩小为原来的一半的图形,并写出各顶点的坐标.20.(8分)如图,已知AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若,DE=6,求EF的长.21.(8分)某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰好是销售收入的25%.如果第一天的销售收入5万元,且每天的销售收入都有增长,第三天的利润是1.8万元,(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?22.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为的中点时,求AF的值.23.(10分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)将△ABC各顶点的横纵坐标都缩小为原来的得到△A1B1C1,请在图中画出△A1B1C1;(2)求A1C1的长.24.(10分)已知关于x的一元二次方程有两个实数根x1,x1.(1)求实数k的取值范围;(1)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.25.(12分)如图,在正方形中,,点在正方形边上沿运动(含端点),连接,以为边,在线段右侧作正方形,连接、.小颖根据学习函数的经验,在点运动过程中,对线段、、的长度之间的关系进行了探究.下面是小颖的探究过程,请补充完整:(1)对于点在、边上的不同位置,画图、测量,得到了线段、、的长度的几组值,如下表:位置位置位置位置位置位置位置在、和的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数.(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象:(3)结合函数图像,解决问题:当为等腰三角形时,的长约为26.如图所示,在△ABC中,∠B=90°,AB=11mm,BC=14mm,动点P从点A开始,以1mm/S的速度沿边AB向B移动(不与点B重合),动点Q从点B开始,以4m/s的速度沿边BC向C移动(不与C重合),如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm1.(1)写出y与x之间的函数表达式;(1)当x=1时,求四边形APQC的面积.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据一次函数图象的增减性判断即可.【详解】∵k=﹣3<0,∴y值随x值的增大而减小,又∵x1<x1,∴y1>y1.故选:A.【点睛】本题考查一次函数图象的增减性,关键在于先判断k值再根据图象的增减性判断.2、A【解析】根据一元二次方程判别式的公式进行计算即可.【详解】解:在这个方程中,a=1,b=-2,c=0,∴,故选:A.【点睛】本题考查一元二次方程判别式,熟记公式正确计算是本题的解题关键.3、C【分析】根据二次根式的性质先化简,再根据幂运算的公式计算即可得出结果.【详解】解:==,故选C.【点睛】本题考查了二次根式的性质和同底数幂的乘方,熟练掌握二次根式的性质和同底数幂的乘方进行化简是解题的关键.4、B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是,故选:B.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.5、A【详解】是同弧所对的圆周角和圆心角,,因为圆心角∠BOC=100°,所以圆周角∠BAC=50°【点睛】本题考查圆周角和圆心角,解本题的关键是掌握同弧所对的圆周角和圆心角关系,然后根据题意来解答6、D【分析】由点P在圆外,易得到圆的直径为10-2,然后计算圆的半径即可.【详解】解:∵点P在圆外∴圆的直径为10-2=8∴圆的半径为4故答案为D.【点睛】本题考查了点与圆的位置关系,关键是根据题意确定圆的直径,是解答本题的关键.7、D【分析】根据相似三角形的判定定理判断即可.【详解】解:①由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;②DE∥BC,则有∠AED=∠C,∠ADE=∠B,则可判断△ADE∽△ACB;③=,∠A=∠A,则可判断△ADE∽△ACB;④AD·BC=DE·AC,可化为,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB;⑤由∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;所以能满足△ADE∽△ACB的条件是:①②③⑤,共4个,故选:D.【点睛】此题考查了相似三角形的判定,关键是掌握相似三角形的三种判定定理.8、B【解析】试题分析:∵函数y=x2的图象的顶点坐标为,将函数y=x2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是.∴所得抛物线的表达式为.故选B.考点:二次函数图象与平移变换.9、A【分析】根据三角形的中位线定理解答即可.【详解】解:∵A、B分别是CD、CE的中点,DE=18m,∴AB=DE=9m,故选:A.【点睛】本题考查了三角形的中位线定理:三角形的中位线平行于第三边并且等于第三边的一半.10、B【分析】利用x=1时,y=1可对①进行判断;利用对称轴方程可对②进行判断;利用对称性确定抛物线与x轴的另一个交点坐标为(-3,1),则根据抛物线与x轴的交点问题可对③进行判断;利用抛物线在x轴下方对应的自变量的范围可对④进行判断.【详解】∵x=1时,y=1,∴a+b+c=1,所以①正确;∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,所以②错误;∵抛物线与x轴的一个交点坐标为(1,1),而抛物线的对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点坐标为(﹣3,1),∴方程ax2+bx+c=1的两根分别为﹣3和1,所以③正确;当﹣3<x<1时,y<1,所以④错误.故选:B.【点睛】本题考查的是抛物线的性质及对称性,掌握二次函数的性质及其与一元二次方程的关系是关键.11、A【分析】根据反比例函数系数k的几何意义得到|a|=S矩形ADOE,|b|=S矩形BCOE,进而得到|b|+|a|=8,然后根据a<0,b>0可得答案.【详解】解:如图,∵AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,∴|a|=S矩形ADOE,|b|=S矩形BCOE,∵矩形ABCD的面积为8,∴S矩形ABCD=S矩形ADOE+S矩形BCOE=8,∴|b|+|a|=8,∵反比例函数y=在第二象限,反比例函数y=在第一象限,∴a<0,b>0,∴|b|+|a|=b﹣a=8,故选:A.【点睛】本题考查了反比例函数y=(k≠0)的系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.12、C【分析】由题意推出x=0,或(x﹣1)=0,解方程即可求出x的值.【详解】解:∵x(x﹣1)=0,∴x1=0,x2=1,故选C.【点睛】此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键.二、填空题(每题4分,共24分)13、x=1【详解】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴对称轴为直线x=1,故答案为:x=1.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).14、.【解析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.15、【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.16、2π+2﹣4【分析】如图,连接EC.首先证明△BEC是等腰直角三角形,根据S阴=S矩形ABCD-(S矩形ABCD-S扇形ADF)-(S矩形ABCD-S扇形CDE-S△EBC)=S扇形ADF+S扇形CDE+S△EBC-S矩形ABCD计算即可.【详解】如图,连接EC.∵四边形ABCD是矩形,∴AD=BC=2,CD=AB=EC=2,∠B=∠A=∠DCB=90°,∴BE===2,∴BC=BE=2,∴∠BEC=∠BCE=45°,∴∠ECD=45°,∴S阴=S矩形ABCD﹣(S矩形ABCD﹣S扇形ADF)﹣(S矩形ABCD﹣S扇形CDE﹣S△EBC)=S扇形ADF+S扇形CDE+S△EBC﹣S矩形ABCD=+×2×2﹣2×2,=2π+2﹣4.故答案为:2π+2﹣4.【点睛】本题考查扇形的面积公式,矩形的性质等知识,解题的关键是熟练掌握基本知识,学会用分割法求阴影部分面积.17、【分析】根据菱形的判定方法直接就可得出推出菱形的概率.【详解】根据“对角线互相垂直的平行四边形是菱形”直接判断①符合题意;根据“一组邻边相等的平行四边形是菱形”可直接判断②符合题意;根据“对角线相等的平行四边形是矩形”,所以③不符合菱形的判定方法;,,BC=CD,是菱形,故④符合题意;推出菱形的概率为:.故答案为.【点睛】本题主要考查菱形的判定及概率,熟记菱形的判定方法是解题的关键,然后根据概率的求法直接得出答案.18、且【分析】根据根的判别式∆>0,且二次项系数a-2≠0列式求解即可.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】由题意得,解得且,故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.解答时要注意二次项的系数不能等于零.三、解答题(共78分)19、各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【解析】根据题意,分别从AB,AC上截取它的一半找到对应点即可.【详解】如答图所示,△AB′C′,△AB″C″即是所求的三角形(画出一种即可).各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【点睛】本题考查了画位似图形.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.20、1【分析】根据平行线分线段比例定理得到,即,解得EF=1.【详解】解:∵AD∥BE∥CF,∴,∵=,DE=6,∴,∴EF=1.【点睛】本题的考点是平行线分线段成比例.方法是根据已知条件列出相应的比例式,算出答案即可.21、(1)7.2万元;(2)20%.【分析】(1)利用第三天的销售收入=第三天的利润÷销售利润占销售收入的比例,即可求出结论;(2)设第二天和第三天销售收入平均每天的增长率是x,根据第一天及第三天的销售收入,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】(1)1.8÷25%=7.2(万元).答:第三天的销售收入是7.2万元.(2)设第二天和第三天销售收入平均每天的增长率是x,依题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:第二天和第三天销售收入平均每天的增长率是20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22、(1)见解析;(2)【分析】(1)根据条件得出=,推出∠AFC=∠ACD,结合公共角得出三角形相似;(2)根据已知条件证明△ACF≌△DEF,得出AC=DE,利用勾股定理计算出AE的长度,再根据(1)中△AFC∽△ACE,得出=,从而计算出AF的长度.【详解】(1)∵CD⊥AB,AB是⊙O的直径∴=∴∠AFC=∠ACD.∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC∴△AFC∽△ACE(2)∵四边形ACDF内接于⊙O∴∠AFD+∠ACD=180°∵∠AFD+∠DFE=180°∴∠DFE=∠ACD∵∠AFC=∠ACD∴∠AFC=∠DFE.∵△AFC∽△ACE∴∠ACF=∠DEF.∵F为的中点∴AF=DF.∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF∴△ACF≌△DEF.∴AC=DE=1.∵CD⊥AB,AB是⊙O的直径∴CH=DH=2.∴EH=8在Rt△AHC中,AH2=AC2-CH2=16,在Rt△AHE中,AE2=AH2+EH2=80,∴AE=4.∵△AFC∽△ACE∴=,即=,∴AF=.【点睛】本题属于圆与相似三角形的综合,涉及了圆内接四边形的性质,勾股定理,等弧所对的圆周角相等,相似三角形的判定定理等,解题的关键是灵活运用所学知识,正确寻找全等三角形.23、(1)作图见解析;(2)【解析】(1)直接利用位似图形的性质求解即可;(2)根据题意利用勾股定理解答即可.【详解】(1)如图所示:△A1B1C1,△A2B2C2,都是符合题意的图形;(2)A1C1的长为:.【点睛】本题考查了位似变换及勾股定理的知识点,解题的关键是由题意正确得出对应点的位置.24、(1)(1)不存在【分析】(1)由题意可得△≥0,即[﹣(1k+1)]1﹣4(k1+1k)≥0,通过解该不等式即可求得k的取值范围;(1)假设存在实数k使得x1·x1-x11-x11≥0成立.由根与系数的关系可得x1+x1=1k+1,x1·x1=k1+1k,然后利用完全平方公式可以把x1·x1-x11-x11≥0转化为3x1·x1-(x1+x1)1≥0的形式,通过解不等式可以求得k的值.【详解】(1)∵原方程有两个实数根,∴△≥0即[﹣(1k+1)]1﹣4(k1+1k)≥0,∴4k1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于二零二四年计划的环保技术研发合同2篇
- 二零二四年度物流服务合同的物流服务范围和质量标准3篇
- 2024年度热泵节能改造合同3篇
- 2024年度广告投放合同:商场广告位租赁及发布合同2篇
- 2024年度人脸识别技术校园门禁系统安全评估合同
- 2024年度教育培训服务合同标的万名员工培训
- 2024年度体育赛事组织合同竞赛规程3篇
- 2024年度旅行社服务合同(出境游)2篇
- 石灰粉购销合同
- 消火栓购销合同
- Unit+7+Grammar 牛津译林版英语九年级上册
- 华为财务管理(6版)-华为经营管理丛书
- 残疾人康复中心长期发展规划
- 儿童危重症的早期识别
- 市政道路下穿隧道工程施工组织设计
- 医院管理学考试复习题及答案
- 2023年四川省绵阳市中考英语试卷真题(含答案)
- AQ1029-2019 煤矿安全监控系统及检测仪器使用管理规范
- 《你看起来好像很好吃》课件
- 钢管材质证明书
- 各国驻华大使馆联系方式
评论
0/150
提交评论