2022-2023学年吉林省长春市名校调研九级八年级数学第一学期期末统考试题含解析_第1页
2022-2023学年吉林省长春市名校调研九级八年级数学第一学期期末统考试题含解析_第2页
2022-2023学年吉林省长春市名校调研九级八年级数学第一学期期末统考试题含解析_第3页
2022-2023学年吉林省长春市名校调研九级八年级数学第一学期期末统考试题含解析_第4页
2022-2023学年吉林省长春市名校调研九级八年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在中,,,点、分别在边、上,,点是边上一动点,当的值最小时,,则为()A. B. C. D.2.下列添括号正确的是()A. B.C. D.3.下列四个图案中,是轴对称图形的是()A. B. C. D.4.下列各式从左到右的变形中,是因式分解的是()A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+) D.2x2﹣8y2=2(x+2y)(x﹣2y)5.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°6.某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x千米/小时,则方程可列为()A.+= B.-= C.+1=﹣ D.+1=+7.化简分式的结果是()A. B. C. D.8.下列运算正确的是()A. B.3﹣=3C. D.9.为祝福祖国70周年华诞,兴义市中等职业学校全体师生开展了以“我和我的祖国、牢记初心和使命”为主题的演讲比骞,为奖励获奖学生,学校购买了一些钢笔和毛笔,钢笔单价是毛笔单价的1.5倍,购买钢笔用了1200元,购买毛笔用了1500元,购买的钢笔数比毛笔少35支,钢笔、毛笔的单价分别是多少元?如果设毛笔的单价为x元/支,那么下面所列方程正确的是()A. B.C. D.10.一组数据,,,,的众数为,则这组数据的中位数是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知函数,则______.12.如图,中,是上一点,,,则____.13.测得某人的头发直径为0.00000000835米,这个数据用科学记数法表示为____________14.如图,已知,,AC=AD.给出下列条件:①AB=AE;②BC=ED;③;④.其中能使的条件为__________(注:把你认为正确的答案序号都填上).15.如图,中,于D,要使,若根据“”判定,还需要加条件__________16.已知有理数,我们把称为的差倒数,如2的差倒数为,-1的差倒数,已知,是的差倒数,是的差倒数,是的差倒数…,依此类推,则______.17.已知点在轴上,则点的坐标为______.18.将长方形纸片沿折叠,得到如图所示的图形,若,则__________度.三、解答题(共66分)19.(10分)(1)如图1,已知,平分外角,平分外角.直接写出和的数量关系,不必证明;(2)如图2,已知,和三等分外角,和三等分外角.试确定和的数量关系,并证明你的猜想;(不写证明依据)(3)如图3,已知,、和四等分外角,、和四等分外角.试确定和的数量关系,并证明你的猜想;(不写证明依据)(4)如图4,已知,将外角进行分,是临近边的等分线,将外角进行等分,是临近边的等分线,请直接写出和的数量关系,不必证明.20.(6分)(l)观察猜想:如图①,点、、在同一条直线上,,且,,则和是否全等?__________(填是或否),线段之间的数量关系为__________(2)问题解决:如图②,在中,,,,以为直角边向外作等腰,连接,求的长。(3)拓展延伸:如图③,在四边形中,,,,,于点.求的长.21.(6分)解方程组或计算:(1)解二元一次方程组:;(2)计算:()2﹣(﹣1)(+1).22.(8分)方格纸中的每个小方格都是边长为1个单位的正方形,建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(3,1).(1)画出△ABC关于y轴对称的△A1B1C1(2)将△A1B1C1向下平移3个单位后得到△A2B2C2,画出平移后的△A2B2C2,并写出顶点B2的坐标.23.(8分)为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?24.(8分)如图,已知点和点,点和点是轴上的两个定点.(1)当线段向左平移到某个位置时,若的值最小,求平移的距离.(2)当线段向左或向右平移时,是否存在某个位置,使四边形的周长最小?请说明如何平移?若不存在,请说明理由.25.(10分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.(10分)(1)图1是的正方形网格,请在其中选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形;(2)如图2,在正方形网格中,以点为旋转中心,将按逆时针方向旋转,画出旋转后的;(3)如图3,在边长为1个单位长度的小正方形组成的网格中,点、、、都是格点,作关于点的中心对称图形.

参考答案一、选择题(每小题3分,共30分)1、B【分析】延长至点,使,过点作于点,交于点,则此时的值最小.最后根据直角三角形的边角关系求解即可.【详解】如图,延长至点,使,过点作于点,交于点,则此时的值最小.在中,,.,,,.,.,,.,,.在中,,.,,.故选B.【点睛】本题考查了最短路径问题,涉及到最短路径问题,一般要考虑线段的性质定理,结合轴对称变换来解决,因此利用轴对称找到对称点是解题的关键.2、C【分析】添加括号,若括号前是负号,则括号内需要变号,根据这个规则判断下列各选项.【详解】A中,,错误;B中,,错误;C中,,正确;D中,,错误故选:C【点睛】本题考查添括号,注意去括号和添括号关注点一样,当括号前为负号时,去括号需要变号.3、C【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故答案为:C.【点睛】本题考查了轴对称图形,掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、D【解析】A.没把一个多项式转化成几个整式积的形式,故A错误;B.是整式的乘法,故B错误;C.没把一个多项式转化成几个整式积的形式,故C错误;D.把一个多项式转化成几个整式积的形式,故D正确;故选D.5、D【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【详解】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.6、C【分析】设原计划速度为x千米/小时,根据“一运送物资车开往距离出发地180千米的目的地”,则原计划的时间为:,根据“出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶”,则实际的时间为:+1,根据“实际比原计划提前40分钟到达目的地”,列出关于x的分式方程,即可得到答案.【详解】设原计划速度为x千米/小时,根据题意得:原计划的时间为:,实际的时间为:+1,∵实际比原计划提前40分钟到达目的地,∴+1=﹣,故选C.【点睛】本题考查了由实际问题抽象出分式方程,正确找出等量关系,列出分式方程是解题的关键.7、B【分析】原式分子分母提取公因式变形后,约分即可得到结果.【详解】解:原式==.所以答案选B.【点睛】此题考查了约分,找出分子分母的公因式是解本题的关键.8、C【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】A.与不是同类二次根式,不能合并,故该选项计算错误,B.=2,故该选项计算错误,C.==,故该选项计算正确,D.==,故该选项计算错误.故选:C.【点睛】本题考查二次根式得运算,熟练掌握运算法则是解题关键.9、B【分析】根据题意可得:1500元购买的毛笔数量-1200元购买的钢笔数量=20支,根据等量关系列出方程,再解即可.【详解】解:设毛笔单价x元/支,由题意得:,故选:B.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.10、C【分析】根据中位数的定义直接解答即可.【详解】解:把这些数从小到大排列为:1、2、3、4、4,最中间的数是3,

则这组数据的中位数是3;

故选:C.【点睛】本题考查了中位数,掌握中位数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.二、填空题(每小题3分,共24分)11、【分析】根据所求,令代入函数解析式即可得.【详解】令,则.【点睛】本题考查了函数的定义,已知函数解析式,当时,将其代入解析式即可得,本题需注意的是,不是最简式,需进行化简得出最后答案.12、40°【分析】设x,根据等腰三角形的性质,三角形的内角和定理得∠DAC=180°-2x,由三角形外角的性质得∠BAD=,结合条件,列出方程,即可求解.【详解】设x,∵,∴∠C=x,∠BAD=∠DBA=,∴∠DAC=180°-2x,∵,∴180°-2x+=120°,解得:x=40°,故答案是:40°.【点睛】本题主要考查等腰三角形的性质,三角形的内角和定理以及三角形外角的性质定理,掌握上述定理,列出方程,是解题的关键.13、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000835=8.35×10−1.故答案为:8.35×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、①③④【分析】由∠CAE=∠DAB,得∠CAB=∠DAE;则△CAB和△DAE中,已知的条件有:∠CAB=∠DAE,CA=AD;要判定两三角形全等,只需添加一组对应角相等或AE=AB即可.【详解】∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;①∵AB=AE,∠CAB=∠DAE,AC=AD,∴△ABC≌△AED(SAS),故①正确;②∵BC=ED,AC=AD,而∠CAB和∠DAE不是相等两边的夹角,∴不能判定△ABC和△AED是否全等,故②错误;③∵∠C=∠D,AC=AD,∠CAB=∠DAE,∴△ABC≌△AED(ASA),故③正确;④∵∠B=∠E,∠CAB=∠DAE,AC=AD,∴△ABC≌△AED(AAS),故④正确.故答案为:①③④.【点睛】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.15、AB=AC【解析】解:还需添加条件AB=AC.∵AD⊥BC于D,∴∠ADB=∠ADC=90°.在Rt△ABD和Rt△ACD中,∵AB=AC,AD=AD,∴Rt△ABD≌Rt△ACD(HL).故答案为AB=AC.16、【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2020除以3,根据余数的情况确定出与相同的数即可得解.【详解】解:∵,

∴,,,……

∴这个数列以,,2依次循环,且,

∵,

∴,

故答案为:.【点睛】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.17、【解析】根据x轴上点的纵坐标为0列方程求出a的值,再求解即可.【详解】解:∵点P(3a+2,1−a)在x轴上,∴1−a=0,解得a=1,∴3a+2=3×1+2=5,∴点P的坐标为(5,0);故答案为:(5,0).【点睛】本题主要考查了点的坐标,掌握点的坐标是解题的关键.18、114【分析】由折叠的性质得出∠BFE=∠GFE=∠BFG,再由∠1得出∠BFE,然后即可得出∠AEF.【详解】由折叠,得∠BFE=∠GFE=∠BFG∵∴∠BFG=180°-∠1=180°-48°=132°∴∠BFE=132°÷2=66°∵∠A=∠B=90°∴∠AEF=360°-90°-90°-66°=114°故答案为:114.【点睛】此题主要考查根据矩形和折叠的性质求角度,熟练掌握,即可解题.三、解答题(共66分)19、(1);(2);(3);(4).【分析】(1)由平分外角,平分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(2)由和三等分外角,和三等分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(3)由、和四等分外角,、和四等分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(4)由外角进行分,是临近边的等分线,将外角进行等分,是临近边的等分线,合三角形外角的性质与三角形内角和定理,即可得到结论;【详解】(1),理由如下:∵平分外角,平分外角,∴,,∵,,∴,∴;(2),理由如下:由已知得:,,∵,,∴,;(3),理由如下:由已知得:,,∵,,∴,,(4),理由如下:由已知得:,,∵,,∴,∴.【点睛】本题主要考查三角形外角的性质与三角形内角和定理,掌握三角形外角的性质与三角形内角和定理是解题的关键.20、(1)是,;(2);(3)【分析】(1)根据垂直的定义,直角三角形的性质证得∠D=∠CAE,即可利用AAS证明△BAD≌△CEA,即可得到答案;(2)过作,交的延长线于,利用勾股定理求出BC,根据(1)得到,再利用勾股定理求出BD;(3)过作于,作于,连接,利用勾股定理求出BC,证明得到四边形BEFD是正方形,即可求出CG.【详解】(1)∵,,∴∠B=∠C=,∴∠BAD+∠D=∠BAD+∠CAE=90,∴∠D=∠CAE,∵,∴△BAD≌△CEA,∴AB=CE,BD=AC,故答案为:是,;(2)问题解决如图②,过作,交的延长线于,由(1)得:,在中,由勾股定理得:,中,,由勾股定理得:(3)拓展延伸如图③,过作于,作于,连接∵,,,∴AC=13,∵,∴BC=12,∵,,∴∠DEB=∠DFB=90,∴四边形BEFD是矩形,∴∠EDF=90,∴∠EDC=∠ADF,∴,∴ED=DF,∴四边形BEFD是正方形,∴,∴.【点睛】此题是三角形全等的规律探究题,考查三角形全等的判定及性质,勾股定理,根据猜想得到解题的思路是关键,利用该思路解决其他问题.21、(1);(2)6+4【分析】(1)先利用加减消元法消去y得到关于x的一次方程,把解得的x的值代入②计算出y的值,从而得到方程组的解;(2)根据完全平方公式和平方差公式计算.【详解】解:(1),①+②得4x=1+2x+3,解得x=2,把x=2代入②得y=4+3=7,所以方程组的解为;(2)原式=3+4+4﹣(2﹣1)=7+4﹣1=6+4.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.22、(1)见解析;(2)见解析,B2(-1,-3)【分析】(1)利用关于y轴对称点的性质:纵坐标不变,横坐标互为相反数,得出对应点位置即可得出答案;(2)分别作出点A1、B1、C1向下平移3个单位后的点,然后顺次连接,且B2的坐标即为点B1纵坐标减3即可.【详解】解:(1)如图△A1B1C1,即为所求;(2)如图△A2B2C2,即为所求,B2(-1,-3).【点睛】本题考查了根据轴对称变换和平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.23、(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,被调查的人数有:,1.5小时的人数有:补全的条形统计图如下图所示,(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,(3)由题意可得,该校每天户外活动时间超过1小时的学生数为:(人),即该校每天户外活动时间超过1小时的学生有800人.【点睛】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.24、(1)往左平移个单位;(2)存在,往左平移个单位.【分析】(1)作B点关于x轴的对称点B1,连接AB1,由对称性可知AC+BC=AC+B1C,当直线AB1向左平移到经过点C时,AC+BC最小,故求出直线AB1与x轴的交点即可知平移距离;(2)四边形中长度不变,四边形的周长最小,只要最短,将线段DA向右平移2个单位,D,C重合,A点平移到A1(-2,8),方法同(1),求出A1B1的解析式,得到直线A1B1与x轴的交点即可知平移距离.【详解】(1)如图,作B点关于x轴的对称点B1(2,-2),连接AB1,由对称性可知AC+BC=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论