2023学年江苏省盐城初级中学毕业升学考试模拟卷数学卷含答案解析_第1页
2023学年江苏省盐城初级中学毕业升学考试模拟卷数学卷含答案解析_第2页
2023学年江苏省盐城初级中学毕业升学考试模拟卷数学卷含答案解析_第3页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年江苏省盐城初级中学毕业升学考试模拟卷数学卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在测试卷卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=kx(k>0,x>0)的图象经过点C,则A.33B.32C.22.下列二次根式中,是最简二次根式的是()A. B. C. D.3.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60° B.35° C.30.5° D.30°4.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°5.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为()A.1 B.2 C.3 D.46.下列计算正确的是()A.a+a=2a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a77.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012 B.8×1013 C.8×1014 D.0.8×10138.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.1210.对于有理数x、y定义一种运算“Δ”:xΔy=ax+by+c,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知3Δ5=15,4Δ7=28,则1Δ1的值为()A.-1 B.-11 C.1 D.11二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为_____.12.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.13.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.14.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.15.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.16.计算:6﹣=_____三、解答题(共8题,共72分)17.(8分)如图,一位测量人员,要测量池塘的宽度的长,他过两点画两条相交于点的射线,在射线上取两点,使,若测得米,他能求出之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.18.(8分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).19.(8分)如图,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长.20.(8分)今年3月12日植树节期间,学校预购进A、B两种树苗,若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?21.(8分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)22.(10分)如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴于点P,二次函数y=﹣x2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+=17(1)求二次函数的解析式和该二次函数图象的顶点的坐标.(2)若二次函数y=﹣x2+x+m的图象与一次函数y=﹣x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.23.(12分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.24.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?

2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、D【答案解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故选D.点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.2、B【答案解析】

根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.【题目详解】A、=4,不符合题意;B、是最简二次根式,符合题意;C、=,不符合题意;D、=,不符合题意;故选B.【答案点睛】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3、D【答案解析】

根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理即可解答.【题目详解】连接OB,∵点B是弧的中点,∴∠AOB=∠AOC=60°,由圆周角定理得,∠D=∠AOB=30°,故选D.【答案点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.4、C【答案解析】测试卷解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C.考点:解直角三角形的应用.5、C【答案解析】

∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故选C考点:相似三角形的判定与性质.6、A【答案解析】

根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【题目详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C.,故本选项错误;D.,故本选项错误.故选:A.【答案点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.7、B【答案解析】80万亿用科学记数法表示为8×1.故选B.点睛:本题考查了科学计数法,科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.8、D【答案解析】

根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【题目详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【答案点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.9、B【答案解析】测试卷分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.故选B.考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质10、B【答案解析】

先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.【题目详解】由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解这个方程组,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故选B.【答案点睛】本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.二、填空题(本大题共6个小题,每小题3分,共18分)11、﹣1【答案解析】

根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【题目详解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣1.故答案为:﹣1.12、10%【答案解析】

设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.【题目详解】设平均每次上调的百分率是x,依题意得,解得:,(不合题意,舍去).答:平均每次上调的百分率为10%.故答案是:10%.【答案点睛】此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13、64°【答案解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.14、1.【答案解析】

由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【题目详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得.故答案是:1.15、1【答案解析】

设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【题目详解】解:设正多边形的边数为n,由题意得,=144°,解得n=1.故答案为1.【答案点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.16、3【答案解析】

按照二次根式的运算法则进行运算即可.【题目详解】【答案点睛】本题考查的知识点是二次根式的运算,解题关键是注意化简算式.三、解答题(共8题,共72分)17、可以求出A、B之间的距离为111.6米.【答案解析】

根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.【题目详解】解:∵,(对顶角相等),∴,∴,∴,解得米.所以,可以求出、之间的距离为米【答案点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.18、(1)2m(2)27m【答案解析】

(1)首先构造直角三角形△AEM,利用,求出即可.(2)利用Rt△AME中,,求出AE即可.【题目详解】解:(1)过点E作EM⊥AB,垂足为M.设AB为x.在Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+1.在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,又∵,∴,解得:x≈2.∴教学楼的高2m.(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt△AME中,,∴AE=MEcos22°≈.∴A、E之间的距离约为27m.19、(1)详见解析;(1).【答案解析】

(1)以点M为顶点,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【题目详解】(1)作图如图所示;(1)由题知△AOB为等腰Rt△AOB,且OB=1,所以,AO=OB=1又M为OA的中点,所以,AM=1=【答案点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明△AOB为等腰为等腰直角三角形是解(1)的关键.20、(1)购进A种树苗的单价为200元/棵,购进B种树苗的单价为300元/棵(2)A种树苗至少需购进1棵【答案解析】

(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;

(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【题目详解】设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据题意得:3x+5y=21004x+10y=3800解得:x=200y=300答:购进A种树苗的单价为200元/棵,购进B种树苗的单价为300元/棵.(2)设需购进A种树苗a棵,则购进B种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A种树苗至少需购进1棵.【答案点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.21、13.1.【答案解析】测试卷分析:如图,作CM∥AB交AD于M,MN⊥AB于N,根据=,可求得CM的长,在RT△AMN中利用三角函数求得AN的长,再由MN∥BC,AB∥CM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长.测试卷解析:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=,∴AB=AN+BN=13.1米.考点:解直角三角形的应用.22、(1)y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,点M(,0).理由见解析.【答案解析】

(1)由根与系数的关系,结合已知条件可得9+4m=17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y=﹣x+2联立并解得x=0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=,AP=2,过点B作BM⊥AB交x轴于点M,证得△APO∽△MPB,根据相似三角形的性质可得,代入数据即可求得MP=,再求得OM=,即可得点M的坐标为(,0).【题目详解】(1)由题意得:x1+x2=3,x1x2=﹣2m,x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,解得:m=2,抛物线的表达式为:y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,理由:将抛物线表达式和一次函数y=﹣x+2联立并解得:x=0或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论