讲稿20-有机发光二极管-第八部分课件_第1页
讲稿20-有机发光二极管-第八部分课件_第2页
讲稿20-有机发光二极管-第八部分课件_第3页
讲稿20-有机发光二极管-第八部分课件_第4页
讲稿20-有机发光二极管-第八部分课件_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

OrganicLEDs–part8

ExcitonDynamicsinDisorderedOrganicThinFilms

QuantumDotLEDsHandoutonQD-LEDs:Coeetal.,Nature420,800(2002).April29,2003–OrganicOptoelectronics-Lecture20b1OrganicLEDs–part8ExcitonExcitonDynamicsinTimeDependantPL2ExcitonDynamicsinTimeDepenDynamicSpectralShiftsofDCM2inAlq3•MeasurementperformedondopedDCM2:Alq3films•Excitationatλ=490nm(onlyDCM2absorbs)~DCM2PLredshifts>20nmover6ns~Wavelength[nm]3DynamicSpectralShiftsofDCMTimeEvolutionof4%DCM2inAlq3PLSpectrum4TimeEvolutionof4%DCM2inAElectronicProcessesinMoleculesdensityofavailableS1orT1states5ElectronicProcessesinMolecuTimeEvolutionofDCM2SolutionPLSpectra6TimeEvolutionofDCM2SolutioSpectralShiftdueto~ExcitonDiffusion~~IntermolecularSolidStateInteractions~7SpectralShiftdueto~ExcitonExcitonicEnergyVariations8ExcitonicEnergyVariations8ExcitonDistributionintheExcitedState(S1orT1)~TimeEvolvedExcitonThermalization~EXCITONDIFFUSIONLEADSTOREDUCTIONINFWHM9ExcitonDistributionintheEx101011111212TimeEvolutionofPeakPLinNeatThinFilms13TimeEvolutionofPeakPLinNParametersforSimulatingExcitonDiffusionobservedradiativelifetime(τ)NormalizedIntegratedSpectralIntensityFörsterradius(RF)►Assignvalueforallowedtransfers:►AssumeGaussianshapeofwidth,wDOS►CenteratpeakofinitialbulkPLspectrum►MolecularPLspectrumimplied…excitonicdensityofstates(gex(E))14ParametersforSimulatingExciFittingSimulationtoExperiment–DopedFilms•Goodfitspossibleforalldatasets•RFdecreaseswithincreasingdoping,fallingfrom52Åto22Å•wDOSalsodecreaseswithincreasingdoping,rangingfrom0.146eVto0.120eV15FittingSimulationtoExperimeFittingSimulation–NeatFilms•Spectralshiftobservedineachmaterialsystem•MoleculardipoleandwDOSarecorrellated:lowerdipolescorrespondtolessdispersion•Evenwithnodipole,somedispersionexists•Experimentaltechniquegeneral,andyieldsfirstmeasurementsofexcitonicenergydispersioninamorphousorganicsolids16FittingSimulation–NeatFilmTemporalSolidStateSolvationuponexcitationbothmagnitudeanddirectionoflumophoredipolemomentcanchangeFOREXAMPLEforDCM:µ1–µ0>20Debye!~from5.6Dto26.3D~followingtheexcitationtheenvironmentsurroundingtheexcitedmoleculewillreorganizetominimizetheoverallenergyofthesystem(maximizeµ•Eloc)17TemporalSolidStateSolvationExcitonDistributionintheExcitedState(S1orT1)~TimeEvolvedMolecularReconfiguration~DIPOLE-DIPOLEINTERACTIONLEADSTOENERGYSHIFTINDENSITYOFEXCITEDSTATESlog(Time)18ExcitonDistributionintheExFusionofTwoMaterialSetsHybriddevicescouldenableLEDs,SolarCells,Photodetectors,Modulators,andLaserswhichutilizethebestpropertiesofeachindividualmaterial.EfficientOrganicSemiconductorsFlexibleEmissiveFabricationofrationalstructureshasbeenthemainobstacletodate.19FusionofTwoMaterialSetsHybInorganicNanocrystals–QuantumDotsQuantumDotSIZESyntheticrouteofMurrayetal,J.Am.Chem.Soc.115,8706(1993).20InorganicNanocrystals–QuantFusionofTwoMaterialSetsQuantumDotsOrganicMolecules21FusionofTwoMaterialSetsQuaIntegrationofNanoscaleMaterialsQuantumDotsandOrganicSemiconductorsZnSovercoatingshell(0to5monolayers)OleicAcidorTOPOcapsSyntheticroutesofMurrayetal,J.Am.Chem.Soc.115,8706(1993)andChen,etal,MRSSymp.Proc.691,G10.2.TrioctylphosphineoxideTris(8-hydroxyquinoline)Aluminum(III)3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazoleN,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidineN,N'-Bis(3-methylphenyl)-N,N'-bis-(phenyl)-benzidine22IntegrationofNanoscaleMater1.Asolutionofanorganicmaterial,QDs,andsolvent…2.isspin-coatedontoacleansubstrate.3.Duringthesolventdryingtime,theQDsrisetothesurface…4.andself-assembleintograinsofhexagonallyclosepackedspheres.OrganichoststhatdepositasflatfilmsallowforimagingviaAFM,despitetheAFMtipbeingaslargeastheQDs.Phasesegregationisdrivenbyacombinationofsizeandchemistry.PhaseSegregationandSelf-Assembly231.AsolutionofanorganicOrgAstheconcentrationofQDsinthespin-castingsolutionisincreased,thecoverageofQDsonthemonolayerisalsoincreased.MonolayerCoverage–QDconcentration24AstheconcentrationofMonolayCdSe(ZnS)/TOPOPbSe/oleicacidQD-LEDPerformance25CdSe(ZnS)/TOPOPbSe/oleicacidQFullSizeSeriesofPbSeNanocrystalsfrom3nmto10nminDiameter26FullSizeSeriesofPbSeNanocDesignofDeviceStructuresQDsarepoorchargetransportmaterials...Isolatelayerfunctionsofmaximizedeviceperformance1.Generateexcitonsonorganicsites.2.TransferexcitonstoQDsviaFörsterorDexterenergytransfer.3.QDelectroluminescence.PhaseSegregation.Butefficientemitters…Useorganicsforchargetransport.Needanewfabricationmethod

inordertobeabletomakesuchdoubleheterostructures:27DesignofDeviceStructuresQDsAgeneralmethod?Phasesegregationoccursfordifferent1)organichosts:TPD, NPD,andpoly-TPD.2)solvents:chloroform, chlorobenzene,and mixtureswithtoluene.3)QDcorematerials: PbSe,CdSe,and CdSe(ZnS).4)QDcappingmolecules: oleicacidandTOPO.5)QDcoresize:4-8nm.6)substrates:Silicon, Glass,ITO.7)Spinparameters: speed,acceleration andtime.•Thisprocessisrobust,butfurtherexplorationisneededtobroadlygeneralizethesefindings.•Fortheexploredmaterials,consistentdescriptionispossible.•Wehaveshownthattheprocessisnotdependentonanyonematerialcomponent.PhasesegregationQD-LEDstructures28Ageneralmethod?PhasesegregaELRecombination

RegionDependence

onCurrent

Coeetal.,Org.Elect.(2003)29ELRecombination

RegionDependSpectralDependenceonCurrentDensityTOPDOWNVIEWoftheQDMONOLAYERExcitonrecombinationwidthfarexceedstheQDmonolayerthicknessathighcurrentdensity.Toachievetruemonochromeemission,newexcitonconfinementtechniquesareneeded.CROSS-SECTIONALVIEWofQD-LED30SpectralDependenceonCurrentBenefitsofQuantumDotsinOrganicLEDsDemonstrated:•SpectrallyTunable–singlematerialsetcanaccessmostofvisiblerange.•SaturatedColor–linewidthsof<35nmFullWidthatHalfofMaximum.•Caneasilytailor“external”chemistrywithoutaffectingemittingcore.•Cangeneratelargeareainfraredsources.Potential:•HighluminousefficiencyLEDspossibleeveninredandblue.•Inorganic–potentiallymorestable,longerlifetimes.Theidealdyemolecule!31BenefitsofQuantumDotsinOrOrganicLEDs–part8

ExcitonDynamicsinDisorderedOrganicThinFilms

QuantumDotLEDsHandoutonQD-LEDs:Coeetal.,Nature420,800(2002).April29,2003–OrganicOptoelectronics-Lecture20b32OrganicLEDs–part8ExcitonExcitonDynamicsinTimeDependantPL33ExcitonDynamicsinTimeDepenDynamicSpectralShiftsofDCM2inAlq3•MeasurementperformedondopedDCM2:Alq3films•Excitationatλ=490nm(onlyDCM2absorbs)~DCM2PLredshifts>20nmover6ns~Wavelength[nm]34DynamicSpectralShiftsofDCMTimeEvolutionof4%DCM2inAlq3PLSpectrum35TimeEvolutionof4%DCM2inAElectronicProcessesinMoleculesdensityofavailableS1orT1states36ElectronicProcessesinMolecuTimeEvolutionofDCM2SolutionPLSpectra37TimeEvolutionofDCM2SolutioSpectralShiftdueto~ExcitonDiffusion~~IntermolecularSolidStateInteractions~38SpectralShiftdueto~ExcitonExcitonicEnergyVariations39ExcitonicEnergyVariations8ExcitonDistributionintheExcitedState(S1orT1)~TimeEvolvedExcitonThermalization~EXCITONDIFFUSIONLEADSTOREDUCTIONINFWHM40ExcitonDistributionintheEx411042114312TimeEvolutionofPeakPLinNeatThinFilms44TimeEvolutionofPeakPLinNParametersforSimulatingExcitonDiffusionobservedradiativelifetime(τ)NormalizedIntegratedSpectralIntensityFörsterradius(RF)►Assignvalueforallowedtransfers:►AssumeGaussianshapeofwidth,wDOS►CenteratpeakofinitialbulkPLspectrum►MolecularPLspectrumimplied…excitonicdensityofstates(gex(E))45ParametersforSimulatingExciFittingSimulationtoExperiment–DopedFilms•Goodfitspossibleforalldatasets•RFdecreaseswithincreasingdoping,fallingfrom52Åto22Å•wDOSalsodecreaseswithincreasingdoping,rangingfrom0.146eVto0.120eV46FittingSimulationtoExperimeFittingSimulation–NeatFilms•Spectralshiftobservedineachmaterialsystem•MoleculardipoleandwDOSarecorrellated:lowerdipolescorrespondtolessdispersion•Evenwithnodipole,somedispersionexists•Experimentaltechniquegeneral,andyieldsfirstmeasurementsofexcitonicenergydispersioninamorphousorganicsolids47FittingSimulation–NeatFilmTemporalSolidStateSolvationuponexcitationbothmagnitudeanddirectionoflumophoredipolemomentcanchangeFOREXAMPLEforDCM:µ1–µ0>20Debye!~from5.6Dto26.3D~followingtheexcitationtheenvironmentsurroundingtheexcitedmoleculewillreorganizetominimizetheoverallenergyofthesystem(maximizeµ•Eloc)48TemporalSolidStateSolvationExcitonDistributionintheExcitedState(S1orT1)~TimeEvolvedMolecularReconfiguration~DIPOLE-DIPOLEINTERACTIONLEADSTOENERGYSHIFTINDENSITYOFEXCITEDSTATESlog(Time)49ExcitonDistributionintheExFusionofTwoMaterialSetsHybriddevicescouldenableLEDs,SolarCells,Photodetectors,Modulators,andLaserswhichutilizethebestpropertiesofeachindividualmaterial.EfficientOrganicSemiconductorsFlexibleEmissiveFabricationofrationalstructureshasbeenthemainobstacletodate.50FusionofTwoMaterialSetsHybInorganicNanocrystals–QuantumDotsQuantumDotSIZESyntheticrouteofMurrayetal,J.Am.Chem.Soc.115,8706(1993).51InorganicNanocrystals–QuantFusionofTwoMaterialSetsQuantumDotsOrganicMolecules52FusionofTwoMaterialSetsQuaIntegrationofNanoscaleMaterialsQuantumDotsandOrganicSemiconductorsZnSovercoatingshell(0to5monolayers)OleicAcidorTOPOcapsSyntheticroutesofMurrayetal,J.Am.Chem.Soc.115,8706(1993)andChen,etal,MRSSymp.Proc.691,G10.2.TrioctylphosphineoxideTris(8-hydroxyquinoline)Aluminum(III)3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazoleN,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidineN,N'-Bis(3-methylphenyl)-N,N'-bis-(phenyl)-benzidine53IntegrationofNanoscaleMater1.Asolutionofanorganicmaterial,QDs,andsolvent…2.isspin-coatedontoacleansubstrate.3.Duringthesolventdryingtime,theQDsrisetothesurface…4.andself-assembleintograinsofhexagonallyclosepackedspheres.OrganichoststhatdepositasflatfilmsallowforimagingviaAFM,despitetheAFMtipbeingaslargeastheQDs.Phasesegregationisdrivenbyacombinationofsizeandchemistry.PhaseSegregationandSelf-Assembly541.AsolutionofanorganicOrgAstheconcentrationofQDsinthespin-castingsolutionisincreased,thecoverageofQDsonthemonolayerisalsoincreased.MonolayerCoverage–QDconcentration55AstheconcentrationofMonolayCdSe(ZnS)/TOPOPbSe/oleicacidQD-LEDPerformance56CdSe(ZnS)/TOPOPbSe/oleicacidQFullSizeSeriesofPbSeNanocrystalsfrom3nmto10nminDiameter57FullSizeSeriesofPbSeNanocDesignofDeviceStructuresQDsarepoorchargetransportmaterials...Isolatelayerfunctionsofmaximizedeviceperformance1.Generateexcitonsonorganicsites.2.TransferexcitonstoQDsviaFörsterorDexterenergytransfer.3.QDelectroluminescence.PhaseSegregation.Butefficientemitters…Useorganicsforchargetransport.Needanewfabricationmethod

inordertobeabletomakesuchdoubleheterostructures:58DesignofDeviceStructuresQDsAgeneralmethod?Phasesegregationoccursfordifferent1)organichosts:TPD, NPD,andpoly-TPD.2)solvents:chloroform, chlorobenzene,and mixtureswithtoluene.3)QDcorematerials: PbSe,CdSe,and CdSe(ZnS).4)QDcappingmolecule

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论