




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
OrganicLEDs–part8
ExcitonDynamicsinDisorderedOrganicThinFilms
QuantumDotLEDsHandoutonQD-LEDs:Coeetal.,Nature420,800(2002).April29,2003–OrganicOptoelectronics-Lecture20b1OrganicLEDs–part8ExcitonExcitonDynamicsinTimeDependantPL2ExcitonDynamicsinTimeDepenDynamicSpectralShiftsofDCM2inAlq3•MeasurementperformedondopedDCM2:Alq3films•Excitationatλ=490nm(onlyDCM2absorbs)~DCM2PLredshifts>20nmover6ns~Wavelength[nm]3DynamicSpectralShiftsofDCMTimeEvolutionof4%DCM2inAlq3PLSpectrum4TimeEvolutionof4%DCM2inAElectronicProcessesinMoleculesdensityofavailableS1orT1states5ElectronicProcessesinMolecuTimeEvolutionofDCM2SolutionPLSpectra6TimeEvolutionofDCM2SolutioSpectralShiftdueto~ExcitonDiffusion~~IntermolecularSolidStateInteractions~7SpectralShiftdueto~ExcitonExcitonicEnergyVariations8ExcitonicEnergyVariations8ExcitonDistributionintheExcitedState(S1orT1)~TimeEvolvedExcitonThermalization~EXCITONDIFFUSIONLEADSTOREDUCTIONINFWHM9ExcitonDistributionintheEx101011111212TimeEvolutionofPeakPLinNeatThinFilms13TimeEvolutionofPeakPLinNParametersforSimulatingExcitonDiffusionobservedradiativelifetime(τ)NormalizedIntegratedSpectralIntensityFörsterradius(RF)►Assignvalueforallowedtransfers:►AssumeGaussianshapeofwidth,wDOS►CenteratpeakofinitialbulkPLspectrum►MolecularPLspectrumimplied…excitonicdensityofstates(gex(E))14ParametersforSimulatingExciFittingSimulationtoExperiment–DopedFilms•Goodfitspossibleforalldatasets•RFdecreaseswithincreasingdoping,fallingfrom52Åto22Å•wDOSalsodecreaseswithincreasingdoping,rangingfrom0.146eVto0.120eV15FittingSimulationtoExperimeFittingSimulation–NeatFilms•Spectralshiftobservedineachmaterialsystem•MoleculardipoleandwDOSarecorrellated:lowerdipolescorrespondtolessdispersion•Evenwithnodipole,somedispersionexists•Experimentaltechniquegeneral,andyieldsfirstmeasurementsofexcitonicenergydispersioninamorphousorganicsolids16FittingSimulation–NeatFilmTemporalSolidStateSolvationuponexcitationbothmagnitudeanddirectionoflumophoredipolemomentcanchangeFOREXAMPLEforDCM:µ1–µ0>20Debye!~from5.6Dto26.3D~followingtheexcitationtheenvironmentsurroundingtheexcitedmoleculewillreorganizetominimizetheoverallenergyofthesystem(maximizeµ•Eloc)17TemporalSolidStateSolvationExcitonDistributionintheExcitedState(S1orT1)~TimeEvolvedMolecularReconfiguration~DIPOLE-DIPOLEINTERACTIONLEADSTOENERGYSHIFTINDENSITYOFEXCITEDSTATESlog(Time)18ExcitonDistributionintheExFusionofTwoMaterialSetsHybriddevicescouldenableLEDs,SolarCells,Photodetectors,Modulators,andLaserswhichutilizethebestpropertiesofeachindividualmaterial.EfficientOrganicSemiconductorsFlexibleEmissiveFabricationofrationalstructureshasbeenthemainobstacletodate.19FusionofTwoMaterialSetsHybInorganicNanocrystals–QuantumDotsQuantumDotSIZESyntheticrouteofMurrayetal,J.Am.Chem.Soc.115,8706(1993).20InorganicNanocrystals–QuantFusionofTwoMaterialSetsQuantumDotsOrganicMolecules21FusionofTwoMaterialSetsQuaIntegrationofNanoscaleMaterialsQuantumDotsandOrganicSemiconductorsZnSovercoatingshell(0to5monolayers)OleicAcidorTOPOcapsSyntheticroutesofMurrayetal,J.Am.Chem.Soc.115,8706(1993)andChen,etal,MRSSymp.Proc.691,G10.2.TrioctylphosphineoxideTris(8-hydroxyquinoline)Aluminum(III)3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazoleN,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidineN,N'-Bis(3-methylphenyl)-N,N'-bis-(phenyl)-benzidine22IntegrationofNanoscaleMater1.Asolutionofanorganicmaterial,QDs,andsolvent…2.isspin-coatedontoacleansubstrate.3.Duringthesolventdryingtime,theQDsrisetothesurface…4.andself-assembleintograinsofhexagonallyclosepackedspheres.OrganichoststhatdepositasflatfilmsallowforimagingviaAFM,despitetheAFMtipbeingaslargeastheQDs.Phasesegregationisdrivenbyacombinationofsizeandchemistry.PhaseSegregationandSelf-Assembly231.AsolutionofanorganicOrgAstheconcentrationofQDsinthespin-castingsolutionisincreased,thecoverageofQDsonthemonolayerisalsoincreased.MonolayerCoverage–QDconcentration24AstheconcentrationofMonolayCdSe(ZnS)/TOPOPbSe/oleicacidQD-LEDPerformance25CdSe(ZnS)/TOPOPbSe/oleicacidQFullSizeSeriesofPbSeNanocrystalsfrom3nmto10nminDiameter26FullSizeSeriesofPbSeNanocDesignofDeviceStructuresQDsarepoorchargetransportmaterials...Isolatelayerfunctionsofmaximizedeviceperformance1.Generateexcitonsonorganicsites.2.TransferexcitonstoQDsviaFörsterorDexterenergytransfer.3.QDelectroluminescence.PhaseSegregation.Butefficientemitters…Useorganicsforchargetransport.Needanewfabricationmethod
inordertobeabletomakesuchdoubleheterostructures:27DesignofDeviceStructuresQDsAgeneralmethod?Phasesegregationoccursfordifferent1)organichosts:TPD, NPD,andpoly-TPD.2)solvents:chloroform, chlorobenzene,and mixtureswithtoluene.3)QDcorematerials: PbSe,CdSe,and CdSe(ZnS).4)QDcappingmolecules: oleicacidandTOPO.5)QDcoresize:4-8nm.6)substrates:Silicon, Glass,ITO.7)Spinparameters: speed,acceleration andtime.•Thisprocessisrobust,butfurtherexplorationisneededtobroadlygeneralizethesefindings.•Fortheexploredmaterials,consistentdescriptionispossible.•Wehaveshownthattheprocessisnotdependentonanyonematerialcomponent.PhasesegregationQD-LEDstructures28Ageneralmethod?PhasesegregaELRecombination
RegionDependence
onCurrent
Coeetal.,Org.Elect.(2003)29ELRecombination
RegionDependSpectralDependenceonCurrentDensityTOPDOWNVIEWoftheQDMONOLAYERExcitonrecombinationwidthfarexceedstheQDmonolayerthicknessathighcurrentdensity.Toachievetruemonochromeemission,newexcitonconfinementtechniquesareneeded.CROSS-SECTIONALVIEWofQD-LED30SpectralDependenceonCurrentBenefitsofQuantumDotsinOrganicLEDsDemonstrated:•SpectrallyTunable–singlematerialsetcanaccessmostofvisiblerange.•SaturatedColor–linewidthsof<35nmFullWidthatHalfofMaximum.•Caneasilytailor“external”chemistrywithoutaffectingemittingcore.•Cangeneratelargeareainfraredsources.Potential:•HighluminousefficiencyLEDspossibleeveninredandblue.•Inorganic–potentiallymorestable,longerlifetimes.Theidealdyemolecule!31BenefitsofQuantumDotsinOrOrganicLEDs–part8
ExcitonDynamicsinDisorderedOrganicThinFilms
QuantumDotLEDsHandoutonQD-LEDs:Coeetal.,Nature420,800(2002).April29,2003–OrganicOptoelectronics-Lecture20b32OrganicLEDs–part8ExcitonExcitonDynamicsinTimeDependantPL33ExcitonDynamicsinTimeDepenDynamicSpectralShiftsofDCM2inAlq3•MeasurementperformedondopedDCM2:Alq3films•Excitationatλ=490nm(onlyDCM2absorbs)~DCM2PLredshifts>20nmover6ns~Wavelength[nm]34DynamicSpectralShiftsofDCMTimeEvolutionof4%DCM2inAlq3PLSpectrum35TimeEvolutionof4%DCM2inAElectronicProcessesinMoleculesdensityofavailableS1orT1states36ElectronicProcessesinMolecuTimeEvolutionofDCM2SolutionPLSpectra37TimeEvolutionofDCM2SolutioSpectralShiftdueto~ExcitonDiffusion~~IntermolecularSolidStateInteractions~38SpectralShiftdueto~ExcitonExcitonicEnergyVariations39ExcitonicEnergyVariations8ExcitonDistributionintheExcitedState(S1orT1)~TimeEvolvedExcitonThermalization~EXCITONDIFFUSIONLEADSTOREDUCTIONINFWHM40ExcitonDistributionintheEx411042114312TimeEvolutionofPeakPLinNeatThinFilms44TimeEvolutionofPeakPLinNParametersforSimulatingExcitonDiffusionobservedradiativelifetime(τ)NormalizedIntegratedSpectralIntensityFörsterradius(RF)►Assignvalueforallowedtransfers:►AssumeGaussianshapeofwidth,wDOS►CenteratpeakofinitialbulkPLspectrum►MolecularPLspectrumimplied…excitonicdensityofstates(gex(E))45ParametersforSimulatingExciFittingSimulationtoExperiment–DopedFilms•Goodfitspossibleforalldatasets•RFdecreaseswithincreasingdoping,fallingfrom52Åto22Å•wDOSalsodecreaseswithincreasingdoping,rangingfrom0.146eVto0.120eV46FittingSimulationtoExperimeFittingSimulation–NeatFilms•Spectralshiftobservedineachmaterialsystem•MoleculardipoleandwDOSarecorrellated:lowerdipolescorrespondtolessdispersion•Evenwithnodipole,somedispersionexists•Experimentaltechniquegeneral,andyieldsfirstmeasurementsofexcitonicenergydispersioninamorphousorganicsolids47FittingSimulation–NeatFilmTemporalSolidStateSolvationuponexcitationbothmagnitudeanddirectionoflumophoredipolemomentcanchangeFOREXAMPLEforDCM:µ1–µ0>20Debye!~from5.6Dto26.3D~followingtheexcitationtheenvironmentsurroundingtheexcitedmoleculewillreorganizetominimizetheoverallenergyofthesystem(maximizeµ•Eloc)48TemporalSolidStateSolvationExcitonDistributionintheExcitedState(S1orT1)~TimeEvolvedMolecularReconfiguration~DIPOLE-DIPOLEINTERACTIONLEADSTOENERGYSHIFTINDENSITYOFEXCITEDSTATESlog(Time)49ExcitonDistributionintheExFusionofTwoMaterialSetsHybriddevicescouldenableLEDs,SolarCells,Photodetectors,Modulators,andLaserswhichutilizethebestpropertiesofeachindividualmaterial.EfficientOrganicSemiconductorsFlexibleEmissiveFabricationofrationalstructureshasbeenthemainobstacletodate.50FusionofTwoMaterialSetsHybInorganicNanocrystals–QuantumDotsQuantumDotSIZESyntheticrouteofMurrayetal,J.Am.Chem.Soc.115,8706(1993).51InorganicNanocrystals–QuantFusionofTwoMaterialSetsQuantumDotsOrganicMolecules52FusionofTwoMaterialSetsQuaIntegrationofNanoscaleMaterialsQuantumDotsandOrganicSemiconductorsZnSovercoatingshell(0to5monolayers)OleicAcidorTOPOcapsSyntheticroutesofMurrayetal,J.Am.Chem.Soc.115,8706(1993)andChen,etal,MRSSymp.Proc.691,G10.2.TrioctylphosphineoxideTris(8-hydroxyquinoline)Aluminum(III)3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazoleN,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidineN,N'-Bis(3-methylphenyl)-N,N'-bis-(phenyl)-benzidine53IntegrationofNanoscaleMater1.Asolutionofanorganicmaterial,QDs,andsolvent…2.isspin-coatedontoacleansubstrate.3.Duringthesolventdryingtime,theQDsrisetothesurface…4.andself-assembleintograinsofhexagonallyclosepackedspheres.OrganichoststhatdepositasflatfilmsallowforimagingviaAFM,despitetheAFMtipbeingaslargeastheQDs.Phasesegregationisdrivenbyacombinationofsizeandchemistry.PhaseSegregationandSelf-Assembly541.AsolutionofanorganicOrgAstheconcentrationofQDsinthespin-castingsolutionisincreased,thecoverageofQDsonthemonolayerisalsoincreased.MonolayerCoverage–QDconcentration55AstheconcentrationofMonolayCdSe(ZnS)/TOPOPbSe/oleicacidQD-LEDPerformance56CdSe(ZnS)/TOPOPbSe/oleicacidQFullSizeSeriesofPbSeNanocrystalsfrom3nmto10nminDiameter57FullSizeSeriesofPbSeNanocDesignofDeviceStructuresQDsarepoorchargetransportmaterials...Isolatelayerfunctionsofmaximizedeviceperformance1.Generateexcitonsonorganicsites.2.TransferexcitonstoQDsviaFörsterorDexterenergytransfer.3.QDelectroluminescence.PhaseSegregation.Butefficientemitters…Useorganicsforchargetransport.Needanewfabricationmethod
inordertobeabletomakesuchdoubleheterostructures:58DesignofDeviceStructuresQDsAgeneralmethod?Phasesegregationoccursfordifferent1)organichosts:TPD, NPD,andpoly-TPD.2)solvents:chloroform, chlorobenzene,and mixtureswithtoluene.3)QDcorematerials: PbSe,CdSe,and CdSe(ZnS).4)QDcappingmolecule
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分期购车银行合同范本
- 兼职厨师劳务合同范本
- 代理建账合同范本
- 入职各种合同范本
- 2025年湖南a2货运从业资格证考试
- 介绍客户返利合同范本
- 农村住房建筑合同范本
- 劳务合同范本英文
- 农田托管合同范本
- 冻库修理合同范本
- 2025年全国高考体育单招政治时事填空练习50题(含答案)
- 中华人民共和国学前教育法-知识培训
- 2023年新高考(新课标)全国2卷数学试题真题(含答案解析)
- 事业单位工作人员奖励审批表
- 山东省技能大赛青岛选拔赛-世赛选拔项目52样题(平面设计技术)
- 人教版六年级美术下册全册课件【完整版】
- GB/T 9788-1988热轧不等边角钢尺寸、外形、重量及允许偏差
- 教科版三年级下册科学全册完整课件
- 学生流失率考核办法(试行)
- JJG 840-1993 函数信号发生器检定规程
- 护理工作质量标准及考核细则
评论
0/150
提交评论