重庆市第一中学2023届高一数学第一学期期末含解析_第1页
重庆市第一中学2023届高一数学第一学期期末含解析_第2页
重庆市第一中学2023届高一数学第一学期期末含解析_第3页
重庆市第一中学2023届高一数学第一学期期末含解析_第4页
重庆市第一中学2023届高一数学第一学期期末含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知x,y是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知扇形的圆心角为,面积为,则扇形的弧长等于(

)A. B.C. D.3.已知定义在上的偶函数,且当时,单调递减,则关于x的不等式的解集是()A. B.C. D.4.为了得到函数的图象,只需要把函数的图象上所有的点①向左平移个单位,再把所有各点的横坐标缩短到原来的倍;②向左平移个单位,再把所有各点的横坐标缩短到原来的倍;③各点的横坐标缩短到原来的倍,再向左平移个单位:④各点的横坐标缩短到原来的倍,再向左平移个单位其中命题正确的为()A.①③ B.①④C.②③ D.②④5.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.6.设命题p:,命题q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知角终边经过点,若,则()A. B.C. D.8.在平行四边形中,与相交于点,是线段中点,的延长线交于点,若,则等于()A. B.C. D.9.已知集合则()A. B.C. D.10.已知函数的最大值与最小值的差为2,则()A.4 B.3C.2 D.11.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知方程的两根为与,则()A.1 B.2C.4 D.6二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.的解集为_____________________________________14.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为轴,建立如图平面直角坐标系,一个水斗从点出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时秒.经过秒后,水斗旋转到点,设点的坐标为,其纵坐标满足,当秒时,___________.15.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.16.已知函数,设,,若成立,则实数的最大值是_______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数(1)若函数在区间上有且仅有1个零点,求a的取值范围:(2)若函数在区间上的最大值为,求a的值18.计算下列各式:(1)(式中字母均为正数);(2).19.已知函数,且最小正周期为.(1)求的单调增区间;(2)若关于的方程在上有且只有一个解,求实数的取值范围.20.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:00200(1)请将上表数据补充完整;函数解析式为=(直接写出结果即可);(2)求函数的单调递增区间;(3)求函数在区间上的最大值和最小值21.如图,在几何体ABCDEF中,平面平面ABFE.正方形ABFE的边长为2,在矩形ABCD中,(1)证明:;(2)求点B到平面ACF的距离22.已知直线经过直线与直线的交点,并且垂直于直线(Ⅰ)求交点的坐标;(Ⅱ)求直线的方程

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】由充要条件的定义求解即可【详解】因为,若,则,若,则,即,所以,即“”是“”的充要条件,故选:C.2、C【解析】根据圆心角可以得出弧长与半径的关系,根据面积公式可得出弧长【详解】由题意可得,所以【点睛】本题考查扇形的面积公式、弧长公式,属于基础题3、D【解析】由偶函数的性质求得,利用偶函数的性质化不等式中自变量到上,然后由单调性转化求解【详解】解:由题意,,的定义域,时,递减,又是偶函数,因此不等式转化为,,,解得故选:D4、B【解析】利用三角函数图象变换可得出结论.【详解】因为,所以,为了得到函数的图象,只需要把函数的图象上所有的点向左平移个单位,再把所有各点的横坐标缩短到原来的倍,或将函数的图象上各点的横坐标缩短到原来的倍,再向左平移个单位.故①④满足条件,故选:B.5、B【解析】根据三视图画出原图,从而计算出最长的棱长.【详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B6、B【解析】先解不等式,然后根据充分条件和必要条件的定义判断【详解】由,得,所以命题p:,由,得,所以命题q:,因为当时,不一定成立,当时,一定成立,所以p是q成立的必要不充分条件,故选:B7、C【解析】根据三角函数的定义,列出方程,即可求解.【详解】由题意,角终边经过点,可得,又由,根据三角函数的定义,可得且,解得.故选:C.8、A【解析】化简可得,再由及选项可得答案【详解】解:由题意得,,;、、三点共线,,结合选项可知,;故选:9、D【解析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【详解】由解得,所以,又因为,所以,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.10、C【解析】根据解析式可得其单调性,根据x的范围,可求得的最大值和最小值,根据题意,列出方程,即可求得a值.【详解】由题意得在上为单调递增函数,所以,,所以,解得,又,所以.故选:C11、A【解析】先判断“”成立时,“”是否成立,反之,再看“”成立,能否推出“”,即可得答案.【详解】“”成立时,,故“”成立,即“”是“”的充分条件;“”成立时,或,此时推不出“”成立,故“”不是“”的必要条件,故选:A.12、D【解析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【详解】显然方程有两个实数解,由题意,,所以故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由题得,解不等式得不等式的解集.【详解】由题得,所以.所以不等式的解集为.故答案为【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.14、【解析】求出关于的函数解析式,将代入函数解析式,求出的值,可得出点的坐标,进而可求得的值.【详解】由题意可知,,函数的最小正周期为,则,所以,,点对应,,则,可得,,,故,当时,,因为,故点不与点重合,此时点,则.故答案为:.15、【解析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.16、【解析】设不等式的解集为,从而得出韦达定理,由可得,要使,即不等式的解集为,则可得,以及是方程的两个根,再得出其韦达定理,比较韦达定理可得出,从而求出与的关系,代入,得出答案.【详解】,则由题意设集合,即不等式的解集为所以是方程的两个不等实数根则,则由可得,由,所以不等式的解集为所以是方程,即的两个不等实数根,所以故,,则,则,则由,即,即,解得综上可得,所以的最大值为故答案:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)结合函数图象,分四种情况进行讨论,求出a的取值范围;(2)对对称轴分类讨论,表达出不同范围下的最大值,列出方程,求出a的值.【小问1详解】①,解得:,此时,零点为,0,不合题意;②,解得:,此时,的零点为,1,不合题意;③,解得:,当时,的零点为,不合题意;当时,的零点为,不合题意;④,解得:,综上:a的取值范围是【小问2详解】对称轴为,当,即时,在上单调递减,,舍去;当,即时,,解得:或(舍去);当,即时,在上单调递增,,解得:(舍去);综上:18、(1);(2).【解析】(1)根据给定条件利用指数运算法则化简作答.(2)根据给定条件,利用对数换底公式及对数运算性质计算作答.【小问1详解】依题意,.【小问2详解】.19、(1);(2).【解析】(1)根据已知条件求得,再用整体法求函数单调增区间即可;(2)根据(1)中所求函数单调性,结合函数的值域,即可求得参数的值.【小问1详解】因为函数最小正周期为,故可得,解得,则,令,解得.故的单调增区间是:.【小问2详解】因为,由(1)可知,在单调递增,在单调递减,又,,,故方程在上有且只有一个解,只需.故实数的取值范围为.20、(1);(2),;(3)见解析【解析】(1)由函数的最值求出,由周期求出,由五点法作图求出的值,可得函数的解析式(2)利用正弦函数的单调性,求得函数)的单调递增区间(3)利用正弦函数的定义域、值域,求得函数)在区间上的最大值和最小值试题解析:(1)00200根据表格可得再根据五点法作图可得,故解析式为:(2)令函数的单调递增区间为,.(3)因为,所以.得:.所以,当即时,在区间上的最小值为.当即时,在区间上的最大值为.【点睛】本题主要考查由函数的部分图象求解析式,由函数的最值求出,由周期求出,由五点法作图求出的值,正弦函数的单调性以及定义域、值域,属于基础题21、(1)证明见解析;(2)【解析】(1)连接BE,证明AF⊥平面BEC即可;(2)由等体积即可求点B到平面ACF的距离【小问1详解】连接BE,平面平面,且平面平面,又在矩形中,有,平面,平面,,在正方形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论