![2022-2023学年山东省莱山第一中学高一数学第一学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view/7cd29d162d2d51b2aa5d3e7af5d5f934/7cd29d162d2d51b2aa5d3e7af5d5f9341.gif)
![2022-2023学年山东省莱山第一中学高一数学第一学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view/7cd29d162d2d51b2aa5d3e7af5d5f934/7cd29d162d2d51b2aa5d3e7af5d5f9342.gif)
![2022-2023学年山东省莱山第一中学高一数学第一学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view/7cd29d162d2d51b2aa5d3e7af5d5f934/7cd29d162d2d51b2aa5d3e7af5d5f9343.gif)
![2022-2023学年山东省莱山第一中学高一数学第一学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view/7cd29d162d2d51b2aa5d3e7af5d5f934/7cd29d162d2d51b2aa5d3e7af5d5f9344.gif)
![2022-2023学年山东省莱山第一中学高一数学第一学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view/7cd29d162d2d51b2aa5d3e7af5d5f934/7cd29d162d2d51b2aa5d3e7af5d5f9345.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.2.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,3.函数的零点所在的区间()A. B.C. D.4.某学生离家去学校,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,若以纵轴表示离家的距离,横轴表示离家后的时间,则下列四个图形中,符合该学生走法的是()A. B.C. D.5.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有6.设函数,且在上单调递增,则的大小关系为A B.C. D.不能确定7.为庆祝深圳特区成立40周年,2020年10月11日深圳无人机精英赛总决赛在光明区举行,全市共39支队伍参加,下图反映了某学校代表队制作的无人机载重飞行从某时刻开始15分钟内的速度(单位:米/分)与时间x(单位:分)的关系.若定义"速度差函数"u(x)为无人机在时间段为[0,x]内的最大速度与最小速度的差,则u(x)的图象为()A B.C. D.8.已知且点在的延长线上,,则的坐标为()A. B.C. D.9.已知,则的值为A. B.C. D.10.函数的定义域为()A.(-∞,2) B.(-∞,2]C. D.11.已知直线x+3y+n=0在x轴上的截距为-3,则实数n的值为()A. B.C. D.12.三个数,,的大小顺序是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设函数和函数,若对任意都有使得,则实数a的取值范围为______14.给出下列命题:①函数是偶函数;②方程是函数的图象的一条对称轴方程;③在锐角中,;④函数的最小正周期为;⑤函数的对称中心是,,其中正确命题的序号是________.15.已知向量,,,则=_____.16.已知,α为锐角,则___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.某手机生产商计划在2022年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本200万元,每生产(千部)手机,需另投人成本万元,且,由市场调研知,每部手机售价0.5万元,且全年内生产的手机当年能全部销售完.(1)求出2022年的利润(万元)关于年产量(千部)的函数关系式;(利润销售额成本)(2)2022年产量为多少千部时,该生产商所获利润最大?最大利润是多少?18.某市有,两家乒乓球俱乐部,两家的设备和服务都很好,但收费标准不同,俱乐部每张球台每小时5元,俱乐部按月收费,一个月中以内(含)每张球台90元,超过的部分每张球台每小时加收2元.某学校准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于,也不超过(1)设在俱乐部租一-张球台开展活动的收费为元,在俱乐部租一张球台开展活动的收费为元,试求和的解析式;(2)问选择哪家俱乐部比较合算?为什么?19.如图,公路围成的是一块顶角为的角形耕地,其中,在该块土地中处有一小型建筑,经测量,它到公路的距离分别为,现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园.(1)以为坐标原点建立适当的平面直角坐标系,并求出点的坐标;(2)三条公路围成的工业园区的面积恰为,求公路所在直线方程.20.已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.21.在①函数的图象向右平移个单位长度得到的图像,图像关于对称;②函数这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数的图象相邻两条对称轴之间的距离为.(1)若在上的值域为,求a的取值范围;(2)求函数在上的单调递增区间.22.计算:(1)(2)(3)
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C2、B【解析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【详解】设这10个数据分别为:,根据题意,,所以,.故选:B.3、B【解析】,,零点定理知,的零点在区间上所以选项是正确的4、A【解析】纵轴表示离家的距离,所以在出发时间为可知C,D错误,再由刚开始时速度较快,后面速度较慢,可根据直线的倾斜程度得到答案.【详解】当时间时,,故排除C,D;由于刚开始时速度较快,后面速度较慢,所以前段时间的直线的倾斜角更大.故选:A.【点睛】本题考查根据实际问题抽象出对应问题的函数图象,考查抽象概括能力,属于容易题.5、B【解析】根据全称命题的否定性质进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B6、B【解析】当时,,它在上单调递增,所以.又为偶函数,所以它在上单调递减,因,故,选B.点睛:题设中的函数为偶函数,故根据其在上为增函数判断出,从而得到另一侧的单调性和,故可以判断出.7、D【解析】根据,“速度差函数”的定义,分,、,、,、,四种情况,分别求得函数的解析式,从而得到函数的图象【详解】解:由题意可得,当,时,翼人做匀加速运动,,“速度差函数”当,时,翼人做匀减速运动,速度从160开始下降,一直降到80,当,时,翼人做匀减速运动,从80开始下降,,当,时,翼人做匀加速运动,“速度差函数”,结合所给的图象,故选:8、D【解析】设出点的坐标,根据列式,根据向量的坐标运算,求得点的坐标.【详解】设,依题意得,即,故,解得,所以.故选D.【点睛】本小题主要考查平面向量共线的坐标运算,考查运算求解能力,属于基础题.9、C【解析】利用同角三角函数的基本关系把原式的分母“1”变为sin2α+cos2α,然后给分子分母求除以cos2α,把原式化为关于tanα的关系式,把tanα的值代入即可求出值【详解】因为tanα=3,所以故选C【点睛】本题是一道基础题,考查学生灵活运用同角三角函数间的基本关系化简求值的能力,做题的突破点是“1”的灵活变形10、D【解析】利用根式、分式的性质列不等式组求定义域即可.【详解】由题设,,可得,所以函数定义域为.故选:D11、B【解析】根据题意,分析可得点(﹣3,0)在直线x+3y+n=0上,将点的坐标代入直线方程,计算可得答案【详解】根据题意,直线x+3y+n=0在x轴上的截距为﹣3,则点(﹣3,0)在直线x+3y+n=0上,即(﹣3)×+n=0,解可得:n=3;故选B【点睛】本题考查直线的一般式方程以及截距的计算,关键是掌握直线一般方程的形式,属于基础题12、A【解析】由指数函数和对数函数单调性得出范围,从而得出结果【详解】,,;故选A【点睛】本题考查指数函数和对数函数的单调性,熟记函数性质是解题的关键,是基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】先根据的单调性求出的值域A,分类讨论求得的值域B,再将条件转化为A,进行判断求解即可【详解】是上的递减函数,∴的值域为,令A=,令的值域为B,因为对任意都有使得,则有A,而,当a=0时,不满足A;当a>0时,,∴解得;当a<0时,,∴不满足条件A,综上得.故答案为.【点睛】本题考查了函数的值域及单调性的应用,关键是将条件转化为两个函数值域的关系,运用了分类讨论的数学思想,属于中档题14、①②③【解析】由诱导公式化简得函数,判断①正确;求出函数的图象的对称轴(),当时,,判断②正确;在锐角中,由化简得到,判断③正确;直接求出函数的最小正周期为,判断④错误;直接求出函数的对称中心是,判断⑤错误.【详解】①因为函数,所以函数是偶函数,故①正确;②因为函数,所以函数图象的对称轴(),即(),当时,,故②正确;③在锐角中,,即,所以,故③正确;④函数的最小正周期为,故④错误;⑤令,解得,所以函数的对称中心是,故⑤错误.故答案为:①②③【点睛】本题考查三角函数的图象与性质、诱导公式与三角恒等变换,是中档题.15、【解析】先根据向量的减法运算求得,再根据向量垂直的坐标表示,可得关于的方程,解方程即可求得的值.【详解】因为向量,,所以则即解得故答案为:【点睛】本题考查了向量垂直的坐标关系,属于基础题.16、【解析】由同角三角函数关系和诱导公式可得结果.【详解】因为,且为锐角,则,所以,故.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)2022年产量为千部时,该生产商所获利润最大,最大利润是3800万元【解析】(1)根据题意,建立分段函数模型得;(2)结合(1)的函数模型,分类讨论求解最值即可得答案.【小问1详解】解:销售千部手机获得的销售额为:当时,;当时,故,【小问2详解】解:当时,,当时,,当时,,当且仅当,即时,等号成立,因为,所以当(千部)时,所获利润最大,最大利润为:3800万元.18、(1);(2)当时,选择俱乐部比较合算;当时,两家都一样;当时,选择俱乐部比较合算.【解析】(1)根据已给函数模型求出函数解析式(2)比较和的大小可得(可先解方程,然后确定不同范围内两个函数值的大小【详解】(1)由题意可得当时,,当时,,∴(2)当时,,,∴;当时,;当时,,而,∴;当时,,而,∴.∴当时,选择俱乐部比较合算;当时,两家都一样;当时,选择俱乐部比较合算。【点睛】本题考查函数的应用,考查分段函数模型的应用,属于基础题19、(1);(2).【解析】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立平面直角坐标系.根据条件求出直线的方程,设出点坐标,代点到直线的距离公式即可求出所求;(2)由(1)及题意设出直线的方程后,即可求得点的横坐标,与点的纵坐标,由求得后,即可求解.【详解】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立如图所示的平面直角坐标系由题意可设点,且直线的斜率为,并经过点,故直线的方程为:,又因点到的距离为,所以,解得或(舍去)所以点坐标为.(2)由题意可知直线的斜率一定存在,故设其直线方程为:,与直线的方程:,联立后解得:,对直线方程:,令,得,所以,解得,所以直线方程为:,即:.【点睛】本题以直线方程的相关知识为背景,旨在考查学生分析和解决问题的能力,属于中档题.20、(1)(2)【解析】(1)根据表格提供的数据画出函数图象,求出、和、的值,写出的解析式即可;(2)由函数的最小正周期求出的值,再利用换元法,令,结合函数的图象求出方程恰有两个不同的解时的取值范围【详解】解:(1)绘制函数图象如图所示:设的最小正周期为,得.由得又解得,令,即,,据此可得:,又,令可得所以函数的解析式为(2)因为函数的周期为,又,所以令,因为,所以在上有两个不同的解,等价于函数与的图象有两个不同的交点,,所以方程在时恰好有两个不同的解的条件是,即实数的取值范围是【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了函数与方程的应用问题,属于中档题21、(1);(2),,.【解析】先选条件①或条件②,结合函数的性质及图像变换,求得函数,(1)由,得到,根据由正弦函数图像,即可求解;(2)根据函数正弦函数的形式,求得,,进而得出函数的单调递增区间.【详解】方案一:选条件①由函数的图象相邻两条对称轴之间的距离为,可得,解得,所以,又由函数的图象向右平移个单位长度得到,又函数图象关于对称,可得,,因为,所以,所以.(1)由,可得,因为函数在上的值域为,根据由正弦函数图像,可得,解得,所以的取值范围为.(2)由,,可得,,当时,可得;当时,可得;当时,可得,所以函数在上的单调递增区间为,,.方案二:选条件②:由,因为函数的图象相邻两条对称轴之间的距离为,可得,所以,可得,又由函数的图象向右平移个单位长度得到,又函数图象关于对称,可得,,因为,所以,所以.(1)由,可得,因为函数在上的值域为,根据由正弦函数图像,可得,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制作宣传海报合同范本
- 2014网签合同范本
- 劳务合同范例重写
- 2025年度客运站旅客信息服务系统升级合同
- 保证合同范例 博客
- 农村保姆协议合同范本
- 深化教育改革与人才培养质量提升并行
- 分公司 保证合同范例
- 村计生专干申请书
- otc药品销售合同范本
- 2025年宽带研究分析报告
- 建筑与市政工程第三方质量安全巡查方案
- 二零二五版财务顾问保密与工作内容协议3篇
- 2025-2030年中国干混砂浆行业运行状况及发展趋势预测报告
- 2025江苏盐城市交通投资建设控股集团限公司招聘19人高频重点提升(共500题)附带答案详解
- 2024托管班二人合伙的协议书
- 《输电线路金具识别》课件
- 基于PLC的猪场智能液态饲喂系统的设计与研究
- 企业内部管理流程优化方案
- 牧场物语-矿石镇的伙伴们-完全攻略
- 供电公司一把手讲安全
评论
0/150
提交评论