版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
情境引入学习目标1.通过画图、操作、实验等教学活动,探索三角形全等的判定方法(A.S.A.,A.A.S.).(重点)2.会用A.S.A.,A.A.S.判定两个三角形全等.(难点)3.灵活地运用所学的判定方法判定两个三角形全等,从而解决线段或角相等的问题.导入新课问题导入
上节课,我们得到了全等三角形的一种判定方法,还记得吗?S.A.S.
现在我们讨论两角一边的情况:如果两个三角形有两个角、一条边分别对应相等,那么这两个三角形全等吗?(角边角)(角角边)可以分成两种情况:(1)两个角及这两角的夹边;(2)两个角及其中一角的对边.如图,已知两个角和一条线段,以这两个角为内角,以这条线段为这两个角的夹边,画一个三角形.
把你画的三角形与其他同学画的三角形进行比较,所有的三角形都全等吗?换两个角和一条线段,试试看,是否有同样的结论.都全等60°40°4cmABC步骤:1.画一条线段AB,使它等于4cm;2.画∠MAB=60°,∠NBA=40°,MA与NB交于点C.△ABC即为所求.MN讲授新课“角边角”判定三角形全等一
下面用叠合的方法,看看你和你同伴所画的两个三角形是否可以完全重合.ABCDEF全等知识要点
“角边角”判定方法文字语言:两角及其夹边分别相等的两个三角形全等(简写成“角边角”或“A.S.A.”).几何语言:∠A=∠A′(已知),AB=A′B′(已知),∠B=∠B′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(ASA).ABCA′B′C′例1
已知:∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB,AB=DC.∵∠ABC=∠DCB(已知),
BC=CB(公共边),
∠ACB=∠DBC(已知),证明:在△ABC和△DCB中,∴△ABC≌△DCB(A.S.A.).∴AB=DC(全等三角形的对应边相等)ASA典例精析BCAD(角角边)
如图,如果两个三角形有两个角分别对应相等,且其中一组相等的角的对边相等,那么这两个三角形是否一定全等?思考分析:因为三角形的内角和等于180°,因此有两个角对应相等,那么第三个角必定对应相等,于是有“角边角”,可证得这两个三角形全等.“角角边”判定三角形全等二已知:如图,∠A=∠A′,∠B=∠B′,AC=A′C′.求证:
△ABC≌△A′B′C′.证明:∵∠A=∠A′,∠B=∠B′,∠A+∠B+∠C=180°,∠A′+∠B′+∠C′=180°(三角形内角和等于180°),∴∠C=∠C′(等量代换).
在△ABC和△A′B′C′中,
∵∠A=∠A′,AC=A′C′,
∠C=∠C′,∴△ABC≌△A′B′C′(A.S.A.)知识要点
“角角边”判定方法文字语言:有两角分别相等且其中一组等角的对边相等的两个三角形全等(简写成“角角边”或“A.A.S.”).几何语言:∠A=∠A′(已知),∠B=∠B′(已知),AC=A′C′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(A.A.S.).ABCA′B′C′例2
如图,点D在AB上,点E在AC上,AD=AE,∠B=∠C,求证:AB=AC.ABCDE分析:证明△ACD≌△ABE,就可以得出AB=AC.证明:在△ACD和△ABE中,∠A=∠A(公共角),∠C=∠B
(已知),AD=AE(已知),∴△ACD≌△ABE(A.A.S.),∴AB=AC.方法归纳:通常利用全等三角形的对应边相等来证明两条线段相等,这是一个重要的方法.类似的方法可以证明两个角相等.已知:如图,△ABC
≌△A′B′C′,AD,A′D′
分别是△ABC
和△A′B′C′的高.求证:AD=A′D′
.ABCDA′B′C′D′例3
求证:全等三角形对应边的高相等.分析:从图中看出,AD,A′D′
分别属于△ABD
和△A′B′D′,要证AD=A′D′,只需证明这两个三角形全等即可.证明:∵△ABC
≌△A′B′C′(已知),∴AB=A'B'(全等三角形的对应边相等),
∠B=∠B'(全等三角形的对应角相等).∵AD⊥BC,A'D'⊥B'C',∴∠ADB=∠A'D'B'=90°(已知).在△ABD和△A'B'D'中,∠ADB=∠A'D'B'=90°(已知),∠B=∠B'(已证),AB=A'B'(已证),∴△ABD≌△A'B'D'.∴AD=A'D'.ABCDA′B′C′D′归纳:全等三角形对应边上的高也相等.思考:全等三角形对应边上的中线、对应角的平分线又有什么关系呢?你能说明其中的道理吗?当堂练习
1.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.解:不全等,因为BC虽然是公共边,但不是对应边.ABCD2.如图所示,OD=OB,AD∥BC,则全等三角形有()(A)2对(B)3对(C)4对(D)5对【解析】选C.根据题意AD∥BC得∠ADO=∠CBO,∠DOA=∠BOC,又OD=OB,所以△DOA≌△BOC.同理可证△DOC≌△BOA,△DAB≌△BCD,△ACD≌△CAB,所以有4对.3.如图,某同学将一块三角形玻璃打碎成了三块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()(A)带(1)去(B)带(2)去(C)带(3)去(D)带(1)(2)去【解析】选C.题干中图(3)包含原三角形的两角一边,根据“A.S.A.”可配一块与原三角形玻璃完全一样的玻璃.ABCDEF4.如图,∠ACB=∠DFE,BC=EF,那么应补充一个条件
,才能使△ABC≌△DEF
(写出一个即可).∠B=∠E或∠A=∠D或
AC=DF(A.S.A.)(A.A.S.)(S.A.S.)AB=DE可以吗?×AB∥DE5.已知:如图,AB⊥BC,AD⊥DC,∠1=∠2,求证:AB=AD.ACDB12证明:∵
AB⊥BC,AD⊥DC,∴∠B=∠D=90°.
在△ABC和△ADC中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021届重庆市缙云教育联盟高一上学期期末数学试题(解析版)
- 2025年施工项目部春节节后复工复产工作专项方案 (汇编3份)
- 《畜牧软件系统介绍》课件
- 小学一年级100以内数学口算练习题大全
- 《结肠癌护理查房HY》课件
- 《海报设计》课件
- 天津市河北区2023-2024学年高三上学期期末质量检测英语试题
- 能源行业环保意识培训回顾
- 石油行业采购工作总结
- 办公室卫生消毒手册
- 服务营销学教案
- 护理查房 小儿支气管肺炎
- 相关方安全管理培训
- 2023年中国雪茄烟行业现状深度研究与未来投资预测报告
- 皮带输送机巡检规程
- 辽宁省大连市沙河口区2022-2023学年七年级上学期期末语文试题(含答案)
- 心肺循环课件
- 东大光明清洁生产审核报告
- 生产计划排产表-自动排产
- 管理研究方法论for msci.students maxqda12入门指南
- 2023年通用技术集团招聘笔试题库及答案解析
评论
0/150
提交评论