




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一课时三角形的内角和我的形状最小,那我的内角和最小.我的形状最大,那我的内角和最大.不对,我有一个钝角,所以我的内角和才是最大的.
一天,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,请同学们作为小判官给它们评判一下吧.导入新知2.会运用三角形内角和定理进行计算.1.会用平行线的性质与平角的定义证明三角形内角和等于180°.素养目标
我们在小学已经知道,任意一个三角形的内角和等于180°.与三角形的形状、大小无关.思考:除了度量以外,你还有什么办法可以验证三角形的内角和为180°呢?折叠还可以用拼接的方法,你知道怎样操作吗?探究新知知识点1三角形的内角和剪拼ABC21探究新知测量480720600600+480+720=1800探究新知锐角三角形三角形的三个内角拼到一起恰好构成一个平角.观测的结果不一定可靠,还需要通过数学知识来说明.从上面的操作过程,你能发现证明的思路吗?三角形的内角和定理的证明在纸上任意画一个三角形,将它的内角剪下拼合在一起.探究新知还有其他的拼接方法吗?三角形三个内角的和等于180°.求证:∠A+∠B+∠C=180°.已知:△ABC.证法1:过点A作l∥BC,
∴∠B=∠1.(两直线平行,内错角相等)
∠C=∠2.(两直线平行,内错角相等)∵∠2+∠1+∠BAC=180°,∴∠B+∠C+∠BAC=180°.12探究新知证法2:延长BC到D,过点C作CE∥BA,∴∠A=∠1.(两直线平行,内错角相等)
∠B=∠2.(两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180°,
∴∠A+∠B+∠ACB=180°.CBAED12探究新知CBAEDF证法3:过D作DE∥AC,作DF∥AB.∴∠C=∠EDB,∠B=∠FDC.(两直线平行,同位角相等)∠A+∠AED=180°,∠AED+∠EDF=180°,(两直线平行,同旁内角相补)∴∠A=∠EDF.∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°.探究新知同学们还有其他的方法吗?思考:多种方法证明三角形内角和等于180°的核心是什么?借助平行线的“移角”的功能,将三个角转化成一个平角.探究新知12CBAED12CBAEDFC24AB3EQDFPGH1BGC24A3EDFH1同学们按照上图中的辅助线,给出证明步骤.探究新知试一试
为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.思路总结
为了证明三个角的和为180°,通过作平行线,利用平行线的性质,把所证问题转化为一个平角或同旁内角互补等,这种转化思想是数学中的常用方法.作辅助线探究新知例1如图,在△ABC中,∠BAC=40°,∠B=75°,
AD是△ABC的角平分线,求∠ADB的度数.ABCD解:由∠BAC=40°,
AD是△ABC的角平分线,得∠BAD=∠BAC=20°.在△ABD中,∠ADB=180°–∠B–∠BAD=180°–75°–20°=85°.利用三角形的内角和定理求角的度数素养考点1探究新知如图,CD是∠ACB的平分线,DE∥BC,∠A=50°,∠B=70°,求∠EDC,∠BDC的度数.解:∵∠A=50°,∠B=70°,∴∠ACB=180°–∠A–∠B=60°.∵CD是∠ACB的平分线,∴∠BCD=∠ACB=30°.∵DE∥BC,∴∠EDC=∠BCD=30°,在△BDC中,∠BDC=180°–∠B–∠BCD=80°.变式题探究新知2.如图,一种滑翔伞的形状是左右对称的四边形ABCD,其中∠A=150°,∠B=∠D=40°.求∠C的度数.解:∠C=180°×2–(40°+40°+150°)
=130°.1.在△ABC中,∠B=40°,∠C=80°,则∠A的度数为(
)A.30°
B.40°
C.50°
D.60°D探究新知3.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,则∠ADE的大小是(
)A.45°B.54°C.40°D.50°C巩固练习例2如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.解:∵DE⊥AB,∴∠FEA=90°.∵在△AEF中,∠FEA=90°,∠A=30°,∴∠AFE=180°–∠FEA–∠A=60°.又∵∠CFD=∠AFE,∴∠CFD=60°.∴在△CDF中,∠CFD=60°,∠FCD=80°,∠D=180°–∠CFD–∠FCD=40°.探究新知
4.直线l1∥l2,一块含45°角的直角三角尺如图放置,∠1=85°,则∠2=________.40°巩固练习l1l2基本图形由三角形的内角和定理易得
∠A+∠B=∠C+∠D.由三角形的内角和定理易得∠1+∠2=∠3+∠4.归纳总结探究新知如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:△ACD是直角三角形.证明:∵∠ACB=90°,∴∠A+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人防车位流转合同范例
- 七年级下册数学教案【6篇】
- 会会议合同标准文本
- 以艺术促进学生情感表达能力计划
- 会与活动公司合同标准文本
- 个人校车出租合同标准文本
- 2025建筑工程合同封面
- 2025建筑幕墙施工合同
- 供货肉类合同标准文本
- 幼儿园专题讨论教学方案计划
- 黄金卷02(广州专用)-【赢在中考·黄金预测卷】2025年中考数学模拟卷(考试版)
- 2025-2030年班用帐篷项目投资价值分析报告
- 生物会考试题及答案
- 2025年合肥二模数学试题及答案
- 血管活性药物静脉输注护理解读
- 2025届武汉市二调数学质量分析正式版【课件】
- 2024-2024年上海市高考英语试题及答案
- 电力各种材料重量表总
- 08SS523建筑小区塑料排水检查井
- 新职业英语-艺术设计.unit5
- 初中物理公式汇总一览表
评论
0/150
提交评论