版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。ABCDEF在△ABC和△DEF中∴△ABC≌△DEF(SSS)AB=DEBC=EFCA=FD用符号语言表达为:
三角形全等判定方法1知识回顾:除了SSS外,还有其他情况吗?继续探索三角形全等的条件.思考(2)三条边(1)三个角(3)两边一角(4)两角一边当两个三角形满足六个条件中的三个时,有四种情况:SSS不能!?继续探讨三角形全等的条件:两边一角思考:已知一个三角形的两条边和一个角,那么这两条边与这一个角的位置上有几种可能性呢?ABCABC图一图二在图一中,∠A是AB和AC的夹角,符合图一的条件,它可称为“两边夹角”。符合图二的条件,通常说成“两边和其中一边的对角”ABCA′
DE现象:两个三角形放在一起能完全重合.说明:这两个三角形全等.
画法:(1)画∠DA′E=∠A;(2)在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′.B′
C′
问题先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,C′A′=CA(即两边和它们的夹角分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?三角形全等判定方法2用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF(SAS)两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”)FEDCBAAC=DF∠C=∠FBC=EF练习:1.在下列推理中填写需要补充的条件,使结论成立在△AOB和△DOC中
A0=DO(已知)=(对顶角相等)BO=CO(已知)∴△AOB≌△DOC().ABODC∠AOB∠DOCSAS=∠A=∠A(公共角)
=ADCBE∴△AEC≌△ADB().2.在△AEC和△ADB中ABACADAESAS注意:SAS中的角必须是两边的夹角,“A”必须在中间。A45°
探索边边角BB′C10cm
8cm
8cm
两边及其中一边的对角对应相等的两个三角形全等吗?已知:AC=10cm,BC=8cm,∠A=45°.△ABC的形状与大小是唯一确定的吗?10cm
AB′C45°
8cm
探索边边角BA8cm
45°
10cm
CSSA不存在显然:△ABC与△AB’C不全等两边及一角对应相等的两个三角形全等吗?①两边及夹角对应相等的两个三角形全等(SAS);②两边及其中一边的的对角对应相等的两个三角形不一定全等.③现在你知道哪些三角形全等的判定方法?SSS,SAS已知:AB=CB,∠ABD=∠CBD△ABD和△CBD全等吗?例1分析:△ABD≌△CBD边:角:边:AB=CB(已知)∠ABD=∠CBD(已知)ABCD(SAS)现在例1的已知条件不改变,而问题改变成:问AD=CD吗?
BD=BD(公共边)BD平分∠ADC吗??ABCD练习3:已知:AD=CD,BD平分∠ADC。求证:∠A=∠C要证明两个三角形中的边或角相等,可以先证明两个三角形全等。两直线平行,内错角相等FABDCE例2:点E、F在AC上,AD//BC,AD=CB,AE=CF
求证(1)△AFD≌△CEB
分析:证三角形全等的三个条件∠A=∠C边角边AD//BCAD=CBAE=CFAF=CE?(已知)证明:∵AD//BC∴∠A=∠C又∵AE=CF在△AFD和△CEB中,AD=CB∠A=∠CAF=CE
∴△AFD≌△CEB(SAS)∴AE+EF=CF+EF即AF=CE摆齐根据写出结论指范围准备条件(已知)(已证)(已证)FABDCE拓展练习:如图,AC=BD,∠CAB=∠DBA,你能判断BC=AD吗?说明理由。ABCD归纳:判定两条线段相等或二个角相等可以通过从它们所在的两个三角形全等而得到。课堂小结:2.求证两个三角形中的边或角相等时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水务培训课件教学课件
- 捉浪花课件教学课件
- 游览路线课件教学课件
- 2024年度版权交换合同标的及交换条件
- 2024年品牌授权经销合同
- 2024年度xyz公司人工智能技术授权合同
- 2024年度BIM技术在建筑可视化与展示中的应用合同
- 2024年度培训费用协议书
- 2024年度0KV电力线路施工绿化配套合同
- 2024年北京影视特效技术服务协议
- 回收PET塑料资源化利用及产业化进展研究
- 《住院患者身体约束的护理》团体标准解读课件
- 英语-浙江省湖州、衢州、丽水2024年11月三地市高三教学质量检测试卷试题和答案
- 劳动技术教案
- 广东省深圳市2023-2024学年高一上学期生物期中试卷(含答案)
- 第七章 立体几何与空间向量综合测试卷(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用)
- 大学美育(同济大学版)学习通超星期末考试答案章节答案2024年
- 2024年浙江省衢州市营商环境建设办公室招聘政府雇员17人高频难、易错点500题模拟试题附带答案详解
- 中国急性缺血性卒中诊治指南(2023版)
- 福建省残疾人岗位精英职业技能竞赛(美甲师)参考试题及答案
- 劳动法律学习试题
评论
0/150
提交评论