![通信原理实验_第1页](http://file4.renrendoc.com/view/a548c2cd518764ce297b7a169db22118/a548c2cd518764ce297b7a169db221181.gif)
![通信原理实验_第2页](http://file4.renrendoc.com/view/a548c2cd518764ce297b7a169db22118/a548c2cd518764ce297b7a169db221182.gif)
![通信原理实验_第3页](http://file4.renrendoc.com/view/a548c2cd518764ce297b7a169db22118/a548c2cd518764ce297b7a169db221183.gif)
![通信原理实验_第4页](http://file4.renrendoc.com/view/a548c2cd518764ce297b7a169db22118/a548c2cd518764ce297b7a169db221184.gif)
![通信原理实验_第5页](http://file4.renrendoc.com/view/a548c2cd518764ce297b7a169db22118/a548c2cd518764ce297b7a169db221185.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实验一信号源实验一、实验目的1、了解频率连续变化的各种波形的产生方法。2、理解帧同步信号与位同步信号在整个通信系统中的作用。3、熟练掌握信号源模块的使用方法。二、实验内容1、观察频率连续可变信号发生器输出的各种波形及7段数码管的显示。2、观察点频方波信号的输出。3、观察点频正弦波信号的输出。4、拨动拨码开关,观察码型可变NRZ码的输出。5、观察位同步信号和帧同步信号的输出。三、实验仪器1、信号源模块2、20M双踪示波器一台3、频率计(可选一台4、PC机(可选一台5、连接线若干四、实验原理信号源模块可以大致分为模拟部分和数字部分,分别产生模拟信号和数字信号。1、模拟信号源部分图1-1模拟信号源部分原理框图模拟信号源部分可以输出频率和幅度可任意改变的正弦波(频率变化范围100Hz~10KHz、三角波(频率变化范围100Hz~1KHz、方波(频率变化范围100Hz~10KHz、锯齿波(频率变化范围100Hz~1KHz以及32KHz、64KHz的点频正弦波(幅度可以调节,各种波形的频率和幅度的调节方法请参考实验步骤。该部分电路原理框图如图1-1所示。在实验前,我们已经将各种波形在不同频段的数据写入了数据存储器U04,并存放在固定的地址中。当单片机U03检测到波形选择开关和频率调节开关送入的信息后,一方面通过预置分频器调整U01中分频器的分频比(分频后的信号频率由数码管SM01~SM04显示;另一方面根据分频器输出的频率和所选波形的种类,通过地址选择器选中数据存储器U04中对应地址的区间,输出相应的数字信号。该数字信号经过D/A转换器U05和开关电容滤波器U06后得到所需模拟信号。2、数字信号源部分数字信号源部分可以产生多种频率的点频方波、NRZ码(可通过拨码开关SW01、SW02、SW03改变码型以及位同步信号和帧同步信号。绝大部分电路功能由U01来完成,通过拨码开关SW04、SW05可改变整个数字信号源位同步信号和帧同步信号的速率,该部分电路原理框图如图1-2所示。图1-2数字信号源部分原理框图晶振出来的方波信号经3分频后分别送入分频器和另外一个可预置分频器分频,前一分频器分频后可得到1024KHz、256KHz、64KHz、32KHz、8KHz的方波以及8KHz的窄脉冲信号。可预置分频器的分频值可通过拨码开关SW04、SW05来改变,分频比范围是1~9999。分频后的信号即为整个系统的位同步信号(从信号输出点“BS”输出。数字信号源部分还包括一个NRZ码产生电路,通过该电路可产生以24位为一帧的周期性NRZ码序列,该序列的码型可通过拨码开关SW01、SW02、SW03来改变。在后继的码型变换、时分复用、CDMA等实验中,NRZ码将起到十分重要的作用。五、实验步骤1、将信号源模块小心地固定在主机箱中,确保电源接触良好。2、插上电源线,打开主机箱右侧的交流开关,再按下开关POWER1、POWER2,发光二极管LED01、LED02发光,按一下复位键,信号源模块开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线3、模拟信号源部分①观察“32K正弦波”和“64K正弦波”输出的正弦波波形,调节对应的电位器的“幅度调节”可分别改变各正弦波的幅度。②按下“复位”按键使U03复位,波形指示灯“正弦波”亮,波形指示灯“三角波”、“锯齿波”、“方波”以及发光二极管LED07灭,数码管SM01~SM04显示“2000”。③按一下“波形选择”按键,波形指示灯“三角波”亮(其它仍熄灭,此时信号输出点“模拟输出”的输出波形为三角波。逐次按下“波形选择”按键,四个波形指示灯轮流发亮,此时“模拟输出”点轮流输出正弦波、三角波、锯齿波和方波。④将波形选择为正弦波时(对应发光二极管亮,转动“频率调节”的旋转编码器,可改变输出信号的频率,观察“模拟输出”点的波形,并用频率计查看其频率与数码管显示的是否一致。转动对应电位器“幅度调节”可改变输出信号的幅度,幅度最大可达5V以上。(注意:发光二极管LED07熄灭,转动旋转编码器时,频率以1Hz为单位变化;按一下旋转编码器,LED07亮,此时旋转旋转编码器,频率以50Hz为单位变化;再按一下旋转编码器,LED07熄灭,频率再次以1Hz为单位变化⑤将波形分别选择为三角波、锯齿波、方波,重复上述实验。⑥电位器W02用来调节开关电容滤波器U06的控制电压,电位器W01用来调节D/A转换器U05的参考电压,这两个电位器在出厂时已经调好,切勿自行调节。4、数字信号源部分①拨码开关SW04、SW05的作用是改变分频器的分频比(以4位为一个单元,对应十进制数的1位,以BCD码分别表示分频比的千位、百位、十位和个位,得到不同频率的位同步信号。分频前的基频信号为2MHz,分频比变化范围是1~9999,所以位同步信号频率范围是200Hz~2MHz。例如,若想信号输出点“BS”输出的信号频率为15.625KHz,则需将基频信号进行128分频,将拨码开关SW04、SW05设置为0000000100101000,就可以得到15.625KHz的方波信号。拨码开关SW01、SW02、SW03的作用是改变NRZ码的码型。1位拨码开关就对应着NRZ码中的一个码元,当该位开关往上拨时,对应的码元为1,往下拨时,对应的码元为0。②将拨码开关SW04、SW05设置为0000000100000000,SW01、SW02、SW03设置为011100100011001110101010,观察BS、2BS、FS、NRZ波形。③改变各拨码开关的设置,重复观察以上各点波形。④观察1024K、256K、64K、32K、8K、Z8K各点波形(由于时钟信号为晶振输出的24MHz方波,所以整数倍分频后只能得到的1000K、250K、62.5K、31.25K、7.8125K信号,电路板上的标识为近似值,这一点请注意。六、输入、输出点参考说明1、输出点说明模拟输出:波形种类、幅度、频率均可调节。各种波形的频率变化范围如下:正弦波:100Hz~10KHz锯齿波:100Hz~1KHz方波:100Hz~10KHz三角波:100Hz~1KHz32KHz正弦波:31.25KHz正弦波输出点。(幅度最大可达5V以上64KHz正弦波:62.5KHz正弦波输出点。(幅度最大可达5V以上数字输出:Z8K:7.8125KHz窄脉冲输出点。8K:7.8125KHz方波输出点。32K:31.25KHz方波输出点。64K:62.5KHz方波输出点。256K:250KHz方波输出点。1024K:1000KHz方波输出点。BS:位同步信号输出点。(方波,频率可通过拨码开关SW04、SW05改变2BS:2倍位同步信号频率方波输出点。FS:帧同步信号输出点。(窄脉冲,频率是位同步信号频率的二十四分之一NRZ:24位NRZ码输出点。(码型可通过拨码开关SW01、SW02、SW03改变,码速率和位同步信号频率相同D0-D7:预留端口,便于二次开发实验自行开发。七、实验思考题1.位同步信号和帧同步信号在整个通信原理系统中起什么作用?以串行通信为例:一般的波特率设置为9600b/s。并且一帧格式为10b:包括1个起始位,8个数据位,1个停止位。接下来为了确保通信正确,帧同位信号在起始位置位,表示一帧数据开始发送。位同位在每发一个bit置位。这样就相当于帧信号每10个时钟周期置位,位同步信号1个时钟周期置位。发送接收端都设置这个同步信号,就可以正确接收了。实验二脉冲幅度调制与解调实验一、实验目的1、理解脉冲幅度调制的原理和特点。2、了解脉冲幅度调制波形的频谱特性。二、实验内容1、观察基带信号、脉冲幅度调制信号、抽样时钟的波形,并注意观察它们之间的相互关系及特点。2、改变基带信号或抽样时钟的频率,多次观察波形。3、观察脉冲幅度调制波形的频谱。三、实验仪器1、信号源模块2、PAM/AM模块3、频谱分析模块(可选4、20M双踪示波器一台5、频率计(可选一台6、音频信号发生器(可选一台7、立体声单放机(可选一台8、立体声耳机(可选一副9、连接线若干四、实验原理抽样定理表明:一个频带限制在(0,内的时间连续信号,如果以T≤秒的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。假定将信号和周期为T的冲激函数相乘,如图2-1所示。乘积便是均匀间隔为T秒的冲激序列,这些冲激序列的强度等于相应瞬时上的值,它表示对函数的抽样。若用表示此抽样函数,则有:图2-1抽样与恢复假设、和的频谱分别为、和。按照频率卷积定理,的傅立叶变换是和的卷积:因为所以由卷积关系,上式可写成该式表明,已抽样信号的频谱是无穷多个间隔为ωs的相迭加而成。这就意味着中包含的全部信息。需要注意,若抽样间隔T变得大于,则和的卷积在相邻的周期内存在重叠(亦称混叠,因此不能由恢复。可见,是抽样的最大间隔,它被称为奈奎斯特间隔。图2-2画出当抽样频率≥2B时(不混叠及当抽样频率<2B时(混叠两种情况下冲激抽样信号的频谱。(a连续信号的频谱(b高抽样频率时的抽样信号及频谱(不混叠(c低抽样频率时的抽样信号及频谱(混叠图2-2采用不同抽样频率时抽样信号的频谱所谓脉冲振幅调制,即是脉冲载波的幅度随基带信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则上述所介绍的抽样定理,就是脉冲幅度调制的原理。图2-3脉冲幅度调制原理框图但是,实际上理想的冲激脉冲串物理实现困难,通常采用窄脉冲串来代替。本实验模块采用32K或64K或1MHz的窄矩形脉冲来代替理想的窄脉冲串,当然,也可以采用外接抽样脉冲对输入信号进行脉冲幅度调制,本实验采用图2-3所示的原理方框图。具体的电路原理图如图2-4所示。图2-4脉冲幅度调制电路原理图图中,被抽样的信号从H01输入,若此信号为音频信号(300~3400Hz,则它经过TL084构成的电压跟随器隔离之后,被送到模拟开关4066的第1脚。此时,将抽样脉冲由H03输入,其频率大于或等于输入音频信号频率的2倍即可,但至少应高于3400Hz。该抽样脉冲送到U02(4066的13脚作为控制信号,当该脚为高电平时,U02的1脚和2脚导通,输出调制信号;当U02的13脚为低电平时,U02的1脚和2脚断开,无波形输出。因此,在U02的2脚就可以观察到比较理想的脉冲幅度调制信号。若要解调出原始语音信号,则将调制信号送入截止频率为3400Hz的低通滤波器。因为抽样脉冲的频率远高于输入的音频信号的频率,因此通过低通滤波器之后高频的抽样时钟信号已经被滤除,因而,只需通过一低通滤波器便能无失真地还原出原音频信号。解调电路如图2-5所示。图2-5脉冲幅度调制信号解调电路原理图五、实验步骤1、将信号源模块、PAM/AM模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好。2、插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的开关POWER1、POWER2,各个模块对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,三个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线3、将信号源模块产生的2KHz(峰-峰值在2V左右,从信号输出点“模拟输出”输出的正弦波送入PAM/AM模块的信号输入点“PAM音频输入”,将信号源模块产生的62.5KHz的方波(从信号输出点64K输出送入PAM/AM模块的信号输入点“PAM时钟输入”,观察“调制输出”和“解调输出”测试点输出的波形。4、将“PAM音频输入”和“调制输出”测试点输出的波形分别送入频谱分析模块,观察其频谱并比较之。(可选六、输入、输出点参考说明1、输入点参考说明PAM音频:基带信号输入点。PAM时钟输入:抽样时钟信号输入点。2、输出点参考说明调制输出:PAM调制信号输出点。解调输出:PAM解调信号输出点。七、实验思考题1、简述抽样定理。答:在一个频带限制在(0,fh内的时间连续信号f(t,如果以1/2fh的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一个连续信号f(t的频谱中最高频率不超过fh,当抽样频率fS≥2fh时,抽样后的信号就包含原连续的全部信息。2、在抽样之后,调制波形中包不包含直流分量,为什么?答:在抽样之后已调的波形并不带有直流分量,这是由于在离散点取值,使得直流分量被滤除。3、造成系统失真的原因有哪些?答:造成系统失真的原因可能是由于抽样的频率取值的问题,也可能是系统噪音造成的失真。4、为什么采用低通滤波器就可以完成PAM解调?答:低通滤波器采用的是均匀滤波,他的抽样频率fs不小于2fh,这样就不会发生混淆现象了。通过低通滤波器就可截取出这一段的波形,这样就已经可以还原波形完成PAM调制了。实验三脉冲编码调制与解调实验一、实验目的1、掌握脉冲编码调制与解调的原理。2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。3、了解脉冲编码调制信号的频谱特性。4、了解大规模集成电路TP3067的使用方法。二、实验内容1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。4、观察脉冲编码调制信号的频谱。三、实验仪器1、信号源模块2、模拟信号数字化模块3、频谱分析模块(可选4、终端模块(可选5、20M双踪示波器一台6、音频信号发生器(可选一台7、立体声单放机(可选一台8、立体声耳机(可选一副9、连接线若干四、实验原理先规定模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。如果发送端用预的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。脉冲编码调制(PCM简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。脉码系统原理框图如图3-1所示。PCM主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。国际标准化的PCM码组(电话语音是用八位码组代表一个抽样值。编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始语音信号的频带限制在300-3400Hz左右,所以预滤波会引入一定的频带失真。图3-1PCM系统原理框图在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码。通常,用信号与量化噪声的功率比,即信噪比S/N来表示。国际电报电话咨询委员会(ITU-T详细规定了它的指标,还规定比特率为64kb/s,使用A律或律编码律。下面将详细介绍PCM编码的整个过程,由于抽样原理已在前面实验中详细讨论过,故在此只讲述量化及编码的原理。1、量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图3-2所示,量化器Q输出L个量化值,k=1,2,3,…,L。常称为重建电平或量化电平。当量化器输入信号幅度落在与之间时,量化器输出电平为。这个量化过程可以表达为:这里称为分层电平或判决阈值。通常称为量化间隔。图3-2模拟信号的量化模拟信号的量化分为均匀量化和非均匀量化,我们先讨论均匀量化。把输入模拟信号的取值域按等距离分割的量化称为均匀量化。在均匀量化中,每个量化区间的量化电平均取在各区间的中点,如图3-3所示。其量化间隔(量化台阶取决于输入信号的变化范围和量化电平数。当输入信号的变化范围和量化电平数确定后,量化间隔也被确定。例如,输入信号的最小值和最大值分用a和b表示,量化电平数为M,那么,均匀量化的量化间隔为:图3-3均匀量化过程示意图量化器输出为:当式中为第个量化区间的终点,可写成:为第个量化区间的量化电平,可表示为上述均匀量化的主要缺点是,无论抽样值大小如何,量化噪声的均方根值都固定不变。因此,当信号较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。为了克服这个缺点,实际中,往往采用非均匀量化。非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区间,其化间隔也小;反之,量化间隔就大。它与均匀量化相比,有两个突出的优点。首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。通常使用的压缩器中,大多采用对数式压缩。广泛采用的两种对数压缩律是压缩律和A压缩律。美国采用压缩律,我国和欧洲各国均采用A压缩律,因此,本实验模块采用的PCM编码方式也是A压缩律。所谓A压缩律也就是压缩器具有如下特性的压缩律:,A律压扩特性是连续曲线,A值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。实际中,往往都采用近似于A律函数规律的13折线(A=87.6的压扩特性。这样,它基本上保持了连续压扩特性曲线的优点,又便于用数字电路实现,本实验模块中所用到的PCM编码芯片TP3067正是采用这种压扩特性来进行编码的。图3-4示出了这种压扩特性。图3-413折线表3-1列出了13折线时的值与计算值的比较。分段时的表中第二行的值是根据时计算得到的,第三行的值是13折线分段时的值。可见,13折线各段落的分界点与曲线十分逼近,同时按2的幂次分割有利于数字化。2、编码所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。在现有的编码方法中,若按编码的速度来分,大致可分为两大类:低速编码和高速编码。通信中一般都采用第二类。编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。本实验模块中的编码芯片TP3067采用的是逐次比较型。在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。下面结合13折线的量化来加以说明。表3-2段落码表3-3段内码在13折线法中,无论输入信号是正是负,均按8段折线(8个段落进行编码。若用8位折叠二进制码来表示输入信号的抽样量化值,其中用第一位表示量化值的极性,其余七位(第二位至第八位则表示抽样量化值的绝对大小。具体的做法是:用第二至第四位表示段落码,它的8种可能状态来分别代表8个段落的起点电平。其它四位表示段内码,它的16种可能状态来分别代表每一段落的16个均匀划分的量化级。这样处理的结果,8个段落被划分成27=128个量化级。段落码和8个段落之间的关系如表3-2所示;段内码与16个量化级之间的关系见表3-3。可见,上述编码方法是把压缩、量化和编码合为一体的方法。本实验采用大规模集成电路TP3067对语音信号进行PCM编、解码。TP3067在一个芯片内部集成了编码电路和译码电路,是一个单路编译码器。其编码速率为2.048MHz,每一帧数据为8位,帧同步信号为8KHz。模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙里,只在一个特定的时隙中发送编码信号。同样,译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号里才从外部接收PCM编码信号,然后进行译码,经过带通滤波器、放大器后输出。具体电路图如图3-5所示。图3-5PCM编译码电路原理图五、实验步骤1、将信号源模块、模拟信号数字化模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好。2、插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的相应开关POWER1、POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,三个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线3、将信号源模块的拨码开关SW04、SW05设置为00000000000001。4、将信号源模块产生的正弦波信号(频率为2.5KHz,峰-峰值为3V从点“S-IN”输入模拟信号数字化模块,将信号源模块的信号输出点“64K”、“8K”“BS”分别与模拟信号数字化模块的信号输入点“CLKB-IN”、“FRAMB-IN”、“2048K-IN”连接,观察信号输出点“PCMB-OUT”的波形。5、连接“CLKB-IN”和“CLK2-IN”,“FRAMB-IN”和“FRAM2-IN”,连接信号输出点“PCMB-OUT”和信号输入点“PCM2-IN”,观察信号输出点“JPCM”输出的波形。6、将信号输出点“PCMB-OUT”和“JPCM”输出的波形分别引入频谱分析模块,观察输出信号的频谱,记录下来。(可选7、改变输入正弦信号的幅度,分别使其峰-峰值等于和大于5V,将示波器探头分别接在信号输出点“JPCM”和“PCMB-OUT”上,观察满载和过载时的脉冲幅度调制和解调的波形,并记录下来。8、改变输入正弦信号的频率,使其频率分别大于3400Hz或小于300Hz,观察点“JPCM”、“PCMB-OUT”的输出波形,记录下来。六、输入、输出点参考说明1、输入点参考说明2048K-IN:PCM所需时钟信号输入点。S-IN:模拟信号输入点(基带信号。CLKB-IN:PCM编码所需时钟信号输入点。FRAMB-IN:PCM编码帧同步信号输入点。PCM2-IN:PCM解调信号输入点。(用数字示波器观察CLK2-IN:PCM解码所需时钟信号输入点。FRAM2-IN:PCM解码帧同步信号输入点。2、输出点参考说明PCMB-OUT:脉冲编码调制信号输出点。(用数字示波器观察JPCM:PCM解调信号输出点。七、实验思考题1.TP3067PCM编码器输出的PCM数据的速率是多少?在本次实验系统中,为什么要给TP3067提供2.048MHz的时钟?答:码速率为2.045MHZ,PCM编码器在同步工作中,对于发送和接收两个方向应当用相同的主时钟和位时钟,在这一模式中,MCLKx上必须有时钟信号在起作用,而MCLKR/PDN引脚则起了掉电控制作用。在异步工作状态中,发送和接收时钟必须独立设置,MCLK和MCLR必须为2.048MHz。2.为什么实验时观察到的PCM编码信号总是随时变化的?答:不光是PCM编码信号是在不断地变化,任何控制信号只要发出控制指令都发发出信号变化的。只不过变化方式不同罢了。普通的脉冲编码,往往是一个脉冲代表一个通道的指令。遥控操作时也往往是这个脉冲的宽度或者是脉冲的位置有所变化。所以你看起来不是“随时变化”。其实只是信号的大体形状没有变化。而PCM是真正的数字编码。它将每个通道的指令数字化了,比如脉冲由1毫秒到2毫秒的变化,在PCM编码里用模数转换成1和0的数字码,再发出去。所以你用示波器会看到这各编码总是在变化中的实验四振幅键控、移频键控、移相键控解调实验一、实验目的1.掌握2ASK相干解调的原理。2.掌握2FSK过零检测解调的原理。3.掌握2DPSK相干解调的原理。二、实验内容1.观察2ASK、2FSK、2DPSK解调信号波形。2.观察2FSK过零检测解调器各点波形。3.观察2DPSK相干解调器各点波形。三、实验器材1.信号源模块2.数字调制模块3.数字解调模块4.同步信号提取模块5.20M双踪示波器一台6.频率计(选用一台四、实验原理1.2ASK解调原理。2ASK解调有非相干解调(包络检波法和相干解调(同步检测法两种方法,相应的接收系统原理框图如图16-1所示:(a(b图16-12ASK解调原理框图(a非相干方式(b相干方式我们采用的是包络检波法。2ASK调制信号从“ASK-IN”输入,经CA03和RA02组成的耦合电路至半波整流器(由DA02、DA03组成,半波整流后的信号经电压比较器UA01(LM339与参考电位比较后送入抽样判决器进行抽样判决,最后得到解调输出的二进制信号。标号为“ASK判决电压调节”的电位器用来调节电压比较器UA01的判决电压。判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。抽样判决用的时钟信号就是2ASK基带信号的位同步信号,该信号从“ASK-BS”输入,可以从信号源直接引入,也可以从同步信号恢复模块引入。在实际应用的通信系统中,解调器的输入端都有一个带通滤波器来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰的条件。本实验中为了简化实验设备,在调制部分的输出端没有加带通滤波器,并且假设信道是理想的,所以在解调部分的输入端也没有加带通滤波器。2.2FSK解调原理(a(acosωt1(b(b(c(a非相干方式;(b相干方式;(c过零检测法图16-22FSK解调原理框图2FSK有多种方法解调,如包络检波法、相干解调法、鉴频法、过零检测法及差分检波法等,相应的接收系统的框图如图16-2所示。这里采用的是过零检测法对2FSK调制信号进行解调。大家知道,2FSK信号的过零点数随不同载频而异,故检出过零点数就可以得到关于频率的差异,这就是过零检测法的基本思想。用过零检测法对FSK信号进行解调的原理框图如图16-2(c所示。其中整形1和整形2的功能类似于比较器,可在其输入端将输入信号叠加在2.5V上。2FSK调制信号从“FSK-IN”输入。UA03(LM339的判决电压设置在2.5V,可把输入信号进行硬限幅处理。这样,整形1将2FSK信号变为TTL电平;整形2和抽样电路共同构成抽样判决器,其判决电压可通过标号为“2FSK判决电压调节”的电位器进行调节。单稳1和单稳2分别被设置为上升沿触发和下降沿触发,它们与相加器UA05(74HC32一起共同对TTL电平的2FSK信号进行微分、整流处理。电阻RA14与RA16决定上升沿脉冲宽度及下降沿脉冲宽度。抽样判决器的时钟信号就是2FSK基带信号的位同步信号,该信号应从“FSK-BS”输入,可以从信号源直接引入,也可以从同步信号恢复模块引入。3.2DPSK解调原理2DPSK解调最常用的方法是极性比较法和相位比较法,这里采用的是极性比较法对2DPSK信号进行解调,原理框图如图16-3(a所示。2DPSK调制信号从“PSK-IN”输入,位同步信号从“PSK-BS”输入,同步载波从“载波输入”点输入。调制信号经过UA08(MC1496与载波信号相乘后,去掉了调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,对此信号进行抽样判决(抽样判决器由UA10(74HC74构成,其时钟为基带信号的位同步信号,再经过逆差分变换电路(由UA10(74HC74、UA11(74HC86组成,就可以得到基带信号了。(a(b(a极性比较法(b相位比较法图16-32DPSK解调原理框图4.二进制数字调制系统的性能比较现在我们来比较一下2ASK、2FSK、2DPSK这三种二进制数字调制系统的性能。①频带宽度当码元宽度为Ts时,2ASK系统和2PSK系统的频带宽度近似为2/Ts,2FSK系统的频带宽度近似为ssTTff2212>+-。因此,从频带宽度和从频带利用率上看,2FSK系统最不可取。②表16-1中列出了2ASK、2FSK、2DPSK数字调制系统的误码率eP与输入信噪比r的关系。从该表清楚地看出,在每一对相干和非相干的键控系统中,相干方式略优于非相干方式。它们基本上是exp(r-之间的关系,而且随着x→∞,它们将趋于同一极限值。另外,三种相干(或非相干方式之间,在相同误码率条件下,在信噪比要求上2PSK比2FSK小3dB、2FSK比2ASK小3dB。由此看来,在抗加性高斯白噪声方面,相干2PSK性能最好,2FSK次之,2ASK最差。表16-1二进制数字调制系统误码率公式表③对于对信道特性变化的敏感性在选择数字调制方式时,还应考虑它的最佳判决门限对信道特性的变化是否敏感。在2FSK系统中,不需要人为地设置判决门限,它是直接比较两路解调输出的大小来作出判断的。在2PSK系统中,判决器的最佳判决门限电平为零,与接收机输出信号的幅度有关。因此,它不随信道特性的变化而变化。这时,接收机容易保持在最佳判决门限状态。对于2ASK系统,判决器的最佳判决门限为a/2(当(1(0pp=时,它与接收机输入信号的幅度有关。当信道特性发生变化时,接收机输入信号的幅度a将随着发生变化;相应地,判决器的最佳判决门限电平也将随之改变。这时,接收机不容易保持在最佳判决门限状态,从而导致误码率增大。因此,就对信道特性变化的敏感性而言,2ASK性能最差。当信道存在严重的衰落时,通常采用非相干接收,因为这时在接收端不易得到相干解调所需的相干载波。当发射机有严格的限制时,可考虑采用相干接收。因为在给定的码元传输速率及误码率的条件下,相干接收所要求的信噪比要比非相干接收小。④2ASK、2FSK、2PSK来说,发送端设备的复杂程度差不多,而接收端的复杂程度则与所选用的调制和解调方式有关。对于同一种调制方式,相干解调的设备要比非相干解调的复杂;而同为相干解调时,2PSK的设备最复杂,2FSK次之,2ASK最简单。五、实验步骤1.将信号源模块、数字调制模块、数字解调模块、同步信号提取模块小心地固定在主机箱中,确保电源接触良好。2.插上电源线,打开主机箱右侧的交流开关,再分别按下四个模块中的开关POWER1、POWER2,对应的发光二极管LED001、LED002、D400、D401、DA00、DA01、D500、D501发光,按一下信号源模块的复位键,四个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线3.将信号源模块的位同步信号(BS的频率设置为15.625KHz,将信号源模块产生的NRZ码设置为011100101100110010101010,将同步信号提取模块的拨码开关SW501的第一位拨上。4.ASK解调实验①用信号源模块产生的NRZ码为基带信号,合理连接信号源模块与数字调制模块,使数字调制模块的信号输出点“ASK调制输出”能输出正确的ASK调制波形。②将“ASK调制输出”的输出信号送入数字解调模块的信号输入点“ASK-IN”,观察信号输出点“ASK-OUT”处的波形,并调节标号为“ASK判决电压调节”的电位器,直到在该点观察到稳定的NRZ码为止。将该点波形送入同步信号提取模块的信号输入点“NRZ-IN”,再将同步信号提取模块的信号输出点“位同步输出”输出的波形送入数字解调模块的信号输入点“ASK-BS”,观察信号输出点“OUT1”、“OUT2”、“OUT3”、“ASK解调输出”处的波形,并与信号源产生的NRZ码进行比较。③改变信号源产生的NRZ码的设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年肺泡放大模型项目可行性研究报告
- 2025至2031年中国电热毛巾衣物快干器行业投资前景及策略咨询研究报告
- 2025年步进马达驱动器项目可行性研究报告
- 2025年园丁校校通软件项目可行性研究报告
- 2025至2031年中国仿麻纺织品行业投资前景及策略咨询研究报告
- 2025至2030年中国防爆式升降机数据监测研究报告
- 2025至2030年中国钟罩式退火(球化)炉数据监测研究报告
- 2025至2030年盐酸咪达普利片项目投资价值分析报告
- 2025至2030年海草编织篮项目投资价值分析报告
- 2025至2030年最低液面阀项目投资价值分析报告
- 初中生物中考真题(合集)含答案
- 2022版义务教育(地理)课程标准(附课标解读)
- 《医学免疫学实验》课件
- C139客户开发管理模型
- 中考英语阅读理解(含答案)30篇
- GB/T 5019.5-2023以云母为基的绝缘材料第5部分:电热设备用硬质云母板
- 《工伤保险专题》课件
- 2024年农发集团招聘笔试参考题库含答案解析
- 京东运营课件
- 安宁疗护中的人文护理课件
- 头痛的护理小课件
评论
0/150
提交评论