版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,集合,则().A. B.C. D.2.“完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为()A. B. C. D.3.已知函数,则不等式的解集是()A. B. C. D.4.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.5.已知集合A={x|x<1},B={x|},则A. B.C. D.6.若函数()的图象过点,则()A.函数的值域是 B.点是的一个对称中心C.函数的最小正周期是 D.直线是的一条对称轴7.已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为()A. B. C. D.8.已知,,,则()A. B.C. D.9.若的内角满足,则的值为()A. B. C. D.10.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.11.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为()A.56383 B.57171 C.59189 D.6124212.下列判断错误的是()A.若随机变量服从正态分布,则B.已知直线平面,直线平面,则“”是“”的充分不必要条件C.若随机变量服从二项分布:,则D.是的充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.函数在上的最小值和最大值分别是_____________.14.若函数在和上均单调递增,则实数的取值范围为________.15.曲线在点处的切线方程是__________.16.已知为矩形的对角线的交点,现从这5个点中任选3个点,则这3个点不共线的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由18.(12分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.(1)若,求的前项和;(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线交曲线于两点,为中点.(1)求曲线的直角坐标方程和点的轨迹的极坐标方程;(2)若,求的值.20.(12分)已知函数,曲线在点处的切线在y轴上的截距为.(1)求a;(2)讨论函数和的单调性;(3)设,求证:.21.(12分)如图,三棱锥中,(1)证明:面面;(2)求二面角的余弦值.22.(10分)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的极坐标方程;(2)点是曲线上的一点,试判断点与曲线的位置关系.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】
算出集合A、B及,再求补集即可.【题目详解】由,得,所以,又,所以,故或.故选:A.【答案点睛】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.2.C【答案解析】
先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.【题目详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则基本事件总数为,则6和28恰好在同一组包含的基本事件个数,∴6和28不在同一组的概率.故选:C.【答案点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.3.B【答案解析】
由导数确定函数的单调性,利用函数单调性解不等式即可.【题目详解】函数,可得,时,,单调递增,∵,故不等式的解集等价于不等式的解集..∴.故选:B.【答案点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.4.A【答案解析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【题目详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【答案点睛】本道题考查了抛物线的基本性质,难度中等.5.A【答案解析】∵集合∴∵集合∴,故选A6.A【答案解析】
根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【题目详解】由函数()的图象过点,可得,即,,,故,对于A,由,则,故A正确;对于B,当时,,故B错误;对于C,,故C错误;对于D,当时,,故D错误;故选:A【答案点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.7.A【答案解析】
根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【题目详解】解:设点到平面的距离为,因为是中点,所以到平面的距离为,三棱锥的体积,解得,作平面,垂足为的外心,所以,且,所以在中,,此为球的半径,.故选:A.【答案点睛】本题考查球的表面积,考查点到平面的距离,属于中档题.8.C【答案解析】
利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.【题目详解】,所以,即.故选:C.【答案点睛】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.9.A【答案解析】
由,得到,得出,再结合三角函数的基本关系式,即可求解.【题目详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【答案点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.10.B【答案解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【题目详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【答案点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.11.C【答案解析】
根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.【题目详解】被5除余3且被7除余2的正整数构成首项为23,公差为的等差数列,记数列则令,解得.故该数列各项之和为.故选:C.【答案点睛】本题考查等差数列的应用,属基础题。12.D【答案解析】
根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.【题目详解】对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;对于选项,若随机变量服从二项分布:,则,故选项正确,不符合题意;对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.因而是的既不充分也不必要条件,故选项不正确,符合题意.故选:D【答案点睛】本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
求导,研究函数单调性,分析,即得解【题目详解】由题意得,,令,解得,令,解得.在上递减,在递增.,而,故在区间上的最小值和最大值分别是.故答案为:【答案点睛】本题考查了导数在函数最值的求解中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题14.【答案解析】
化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可.【题目详解】由知,当时,在和上单调递增,在和上均单调递增,,
,
的取值范围为:.
故答案为:.【答案点睛】本题主要考查了三角函数的图象与性质,关键是根据函数的单调性列出关于m的方程组,属中档题.15.【答案解析】
利用导数的几何意义计算即可.【题目详解】由已知,,所以,又,所以切线方程为,即.故答案为:【答案点睛】本题考查导数的几何意义,考查学生的基本计算能力,要注意在某点处的切线与过某点的切线的区别,是一道容易题.16.【答案解析】
基本事件总数,这3个点共线的情况有两种和,由此能求出这3个点不共线的概率.【题目详解】解:为矩形的对角线的交点,现从,,,,这5个点中任选3个点,基本事件总数,这3个点共线的情况有两种和,这3个点不共线的概率为.故答案为:.【答案点睛】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)不存在,见解析【答案解析】
(1)求出函数的导数,通过讨论的范围求出函数的单调区间即可;(2)求出函数的导数,结合导数的几何意义,再令,转化为方程有解问题,即可说明.【题目详解】(1)函数的定义域为,所以当时,;,所以函数在上单调递增当时,①当时,函数在上递增②,显然无增区间;③当时,,函数在上递增,综上当函数在上单调递增.当时函数在上单调递增;当时函数无单调递增区间当时函数在上单调递增(2)假设函数存在“中值相依切线”设是曲线上不同的两个点,且则曲线在点处的切线的斜率为,.令,则,单调递增,,故无解,假设不成立综上,假设不成立,所以不存在“中值相依切线”【答案点睛】本题考查了函数的单调性,导数的几何意义,考查导数的应用以及分类讨论和转化思想,属于中档题.18.(1)(2)证明见解析(3)证明见解析【答案解析】
(1)由是递增数列,得,由此能求出的前项和.(2)推导出,,由此能证明的“极差数列”仍是.(3)证当数列是等差数列时,设其公差为,,是一个单调递增数列,从而,,由,,,分类讨论,能证明若数列是等差数列,则数列也是等差数列.【题目详解】(1)解:∵无穷数列的前项中最大值为,最小值为,,,是递增数列,∴,∴的前项和.(2)证明:∵,,∴,∴,∵,∴,∴的“极差数列”仍是(3)证明:当数列是等差数列时,设其公差为,,根据,的定义,得:,,且两个不等式中至少有一个取等号,当时,必有,∴,∴是一个单调递增数列,∴,,∴,∴,∴是等差数列,当时,则必有,∴,∴是一个单调递减数列,∴,,∴,∴.∴是等差数列,当时,,∵,中必有一个为0,根据上式,一个为0,为一个必为0,∴,,∴数列是常数数列,则数列是等差数列.综上,若数列是等差数列,则数列也是等差数列.【答案点睛】本小题主要考查新定义数列的理解和运用,考查等差数列的证明,考查数列的单调性,考查化归与转化的数学思想方法,属于难题.19.(1),;(2)或【答案解析】
(1)根据曲线的参数方程消去参数,可得曲线的直角坐标方程,再由,,可得点的轨迹的极坐标方程;(2)将曲线极坐标方程求,与直线极坐标方程联立,消去,得到关于的二次方程,由的几何意义可求出,而(1)可知,然后列方程可求出的值.【题目详解】(1)曲线的直角坐标方程为,圆的圆心为,设,所以,则由,即为点轨迹的极坐标方程.(2)曲线的极坐标方程为,将与曲线的极坐标方程联立得,,设,所以,,由,即,令,上述方程可化为,解得.由,所以,即或.【答案点睛】此题考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,利用极坐标求点的轨迹方程,考查运算求解能力,考查数形结合思想,属于中档题.20.(1)(2)为减函数,为增函数.(3)证明见解析【答案解析】
(1)求出导函数,求出切线方程,令得切线的纵截距,可得(必须利用函数的单调性求解);(2)求函数的导数,由导数的正负确定单调性;(3)不等式变形为,由递减,得(),即,即,依次放缩,.不等式,递增得(),,,,先证,然后同样放缩得出结论.【题目详解】解:(1)对求导,得.因此.又因为,所以曲线在点处的切线方程为,即.由题意,.显然,适合上式.令,求导得,因此为增函数:故是唯一解.(2)由(1)可知,,因为,所以为减函数.因为,所以为增函数.(3)证明:由,易得.由(2)可知,在上为减函数.因此,当时,,即.令
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国窗帘材料产业未来发展趋势及投资策略分析报告
- 2024-2030年中国稀有金属提炼产业未来发展趋势及投资策略分析报告
- 2024-2030年中国磨砂UV油墨行业供需状况发展战略规划分析报告
- 2024-2030年中国硝基哑光清漆行业市场发展规模及投资可行性分析报告
- 2024-2030年中国石灰氮行业需求量预测及投资可行性研究报告
- 健身房复课疫情防控工作方案
- 文化艺术培训中心家委会管理
- 2024年度房产评估合同:住宅市场价值评估服务
- 建筑施工现场新冠疫情防控策略方案
- 2024年度智能化系统EPC集成合同
- 照明路灯工程 投标文件(技术方案)
- 数控车削编程试卷及答案
- 大学思政课价值观课件
- 2024年教师普通话培训心得体会范文3篇
- 车寨矿井及选煤厂1.5Mt-a新建工程环评
- 2024年T8联考高三第二次学业质量语文试题答案讲评课件
- 【川教版】一年级上册 《生命 生态 安全》第一课 我和我的布娃娃 课件
- 设备管理的标准化与规范化
- 公司组织架构图
- 药品非处方药市场调研报告
- 人教版八年级英语下册各单元知识点汇总
评论
0/150
提交评论