2023学年广东惠州光正实验学校高三第二次诊断性检测数学试卷(含答案解析)_第1页
2023学年广东惠州光正实验学校高三第二次诊断性检测数学试卷(含答案解析)_第2页
2023学年广东惠州光正实验学校高三第二次诊断性检测数学试卷(含答案解析)_第3页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为()A. B. C. D.2.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为()(注:)A.1624 B.1024 C.1198 D.15603.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交4.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.5.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A. B. C. D.6.的展开式中的系数为()A.5 B.10 C.20 D.307.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()A.55 B.500 C.505 D.50508.的展开式中的常数项为()A.-60 B.240 C.-80 D.1809.已知,,则的大小关系为()A. B. C. D.10.已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,,则的离心率为()A.2 B. C. D.11.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为A. B. C. D.12.已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的()条件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要二、填空题:本题共4小题,每小题5分,共20分。13.如果复数满足,那么______(为虚数单位).14.定义在上的奇函数满足,并且当时,则___15.已知等比数列满足公比,为其前项和,,,构成等差数列,则_______.16.已知数列的前项和为且满足,则数列的通项_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图:在中,,,.(1)求角;(2)设为的中点,求中线的长.18.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.19.(12分)在中,,,.求边上的高.①,②,③,这三个条件中任选一个,补充在上面问题中并作答.20.(12分)某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:同意不同意合计男生a5女生40d合计100(1)求a,d的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为X,求X的分布列及数学期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63521.(12分)已知的内角,,的对边分别为,,,.(1)若,证明:.(2)若,,求的面积.22.(10分)已知函数,其中,.(1)当时,求的值;(2)当的最小正周期为时,求在上的值域.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】

由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【题目详解】如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.故选:B【答案点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.2.B【答案解析】

根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【题目详解】依题意:1,4,8,14,23,36,54,……两两作差得:3,4,6,9,13,18,……两两作差得:1,2,3,4,5,……设该数列为,令,设的前项和为,又令,设的前项和为.易,,进而得,所以,则,所以,所以.故选:B【答案点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.3.D【答案解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.4.A【答案解析】

根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【题目详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【答案点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.5.B【答案解析】

由已知可求出焦点坐标为,可求得幂函数为,设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率.【题目详解】依题意可得,抛物线的焦点为,F关于原点的对称点;,,所以,,设,则,解得,∴,可得,又,,可解得,故双曲线的离心率是.故选B.【答案点睛】本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.6.C【答案解析】

由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【题目详解】由已知,,因为展开式的通项为,所以展开式中的系数为.故选:C.【答案点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.7.C【答案解析】

因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【题目详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,,于是.故选:C【答案点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.8.D【答案解析】

求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【题目详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【答案点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.9.D【答案解析】

由指数函数的图像与性质易得最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.【题目详解】根据指数函数的图像与性质可知,由对数函数的图像与性质可知,,所以最小;而由对数换底公式化简可得由基本不等式可知,代入上式可得所以,综上可知,故选:D.【答案点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.10.D【答案解析】

作出图象,取AB中点E,连接EF2,设F1A=x,根据双曲线定义可得x=2a,再由勾股定理可得到c2=7a2,进而得到e的值【题目详解】解:取AB中点E,连接EF2,则由已知可得BF1⊥EF2,F1A=AE=EB,设F1A=x,则由双曲线定义可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,则EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,则e故选:D.【答案点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.11.C【答案解析】

由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C.12.B【答案解析】

根据充分必要条件的概念进行判断.【题目详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【答案点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】

把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.【题目详解】∵,∴,∴,故答案为:.【答案点睛】本小题主要考查复数除法运算,考查复数的模的求法,属于基础题.14.【答案解析】

根据所给表达式,结合奇函数性质,即可确定函数对称轴及周期性,进而由的解析式求得的值.【题目详解】满足,由函数对称性可知关于对称,且令,代入可得,由奇函数性质可知,所以令,代入可得,所以是以4为周期的周期函数,则当时,所以,所以,故答案为:.【答案点睛】本题考查了函数奇偶性与对称性的综合应用,周期函数的判断及应用,属于中档题.15.0【答案解析】

利用等差中项以及等比数列的前项和公式即可求解.【题目详解】由,,是等差数列可知因为,所以,故答案为:0【答案点睛】本题考查了等差中项的应用、等比数列的前项和公式,需熟记公式,属于基础题.16.【答案解析】

先求得时;再由可得时,两式作差可得,进而求解.【题目详解】当时,,解得;由,可知当时,,两式相减,得,即,所以数列是首项为,公比为的等比数列,所以,故答案为:【答案点睛】本题考查由与的关系求通项公式,考查等比数列的通项公式的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【答案解析】

(1)通过求出的值,利用正弦定理求出即可得角;(2)根据求出的值,由正弦定理求出边,最后在中由余弦定理即可得结果.【题目详解】(1)∵,∴.由正弦定理,即.得,∵,∴为钝角,为锐角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【答案点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.18.(1)(2)直线过定点,该定点的坐标为.【答案解析】

(1)因为椭圆过点,所以①,设为坐标原点,因为,所以,又,所以②,将①②联立解得(负值舍去),所以椭圆的标准方程为.(2)由(1)可知,设,.将代入,消去可得,则,,,所以,所以,此时,所以,此时直线的方程为,即,令,可得,所以直线过定点,该定点的坐标为.19.详见解析【答案解析】

选择①,利用正弦定理求得,利用余弦定理求得,再计算边上的高.选择②,利用正弦定理得出,由余弦定理求出,再求边上的高.选择③,利用余弦定理列方程求出,再计算边上的高.【题目详解】选择①,在中,由正弦定理得,即,解得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择②,在中,由正弦定理得,又因为,所以,即;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择③,在中,由,得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.【答案点睛】本小题主要考查真闲的了、余弦定理解三角形,属于中档题.20.(1),有97.5%的把握认为是否同意父母生“二孩”与“性别”有关;(2)详见解析.【答案解析】

(1)根据表格及同意父母生“二孩”占60%可求出,,根据公式计算结果即可确定有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)由题意可知X服从二项分布,利用公式计算概率及期望即可.【题目详解】(1)因为100人中同意父

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论