版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏专用2022版高考物理一轮复习第9章磁场第2节核心素养科学思维系列_“动态圆”模型在电磁学中的应用学案江苏专用2022版高考物理一轮复习第9章磁场第2节核心素养科学思维系列_“动态圆”模型在电磁学中的应用学案PAGE7-江苏专用2022版高考物理一轮复习第9章磁场第2节核心素养科学思维系列_“动态圆”模型在电磁学中的应用学案科学思维系列—“动态圆”模型在电磁学中的应用“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法[示例1]如图所示,在一等腰直角三角形ACD区域内有垂直纸面向外的匀强磁场,磁场的磁感应强度大小为B,一质量为m、电荷量为q的带正电的粒子(重力不计)从AC边的中点O垂直于AC边射入该匀强磁场区域,若该三角形的两直角边长均为2l,则下列关于粒子运动的说法中不正确的是()A.若该粒子的入射速度为v=eq\f(qBl,m),则粒子一定从CD边射出磁场,且距点C的距离为lB.若要使粒子从CD边射出,则该粒子从O点入射的最大速度应为v=eq\f(\r(2)+1qBl,m)C.若要使粒子从CD边射出,则该粒子从O点入射的最大速度应为v=eq\f(\r(2)qBl,m)D.当该粒子以不同的速度入射时,在磁场中运动的最长时间为eq\f(πm,qB)C[若粒子射入磁场时速度为v=eq\f(qBl,m),则由qvB=meq\f(v2,r)可得r=l,由几何关系可知,粒子一定从CD边上距C点为l的位置离开磁场,选项A正确;因为r=eq\f(mv,qB),所以v=eq\f(qBr,m),因此,粒子在磁场中运动的轨迹半径越大,速度就越大,由几何关系可知,当粒子在磁场中的运动轨迹与三角形的AD边相切时,能从CD边射出的轨迹半径最大,此时粒子在磁场中做圆周运动的轨迹半径r=(eq\r(2)+1)l,故其最大速度为v=eq\f(\r(2)+1qBl,m),选项B正确,C错误;粒子在磁场中的运动周期为T=eq\f(2πm,qB),故当粒子从三角形的AC边射出时,粒子在磁场中运动的时间最长,由于此时粒子做圆周运动的圆心角为180°,故其最长时间应为t=eq\f(πm,qB),选项D正确.]“旋转圆”模型的应用适用条件速度大小一定,方向不同粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v0,则圆周运动半径为R=eq\f(mv0,qB)。如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=eq\f(mv0,qB)的圆上界定方法将一半径为R=eq\f(mv0,qB)的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法[示例2]如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。O点处有一放射源,沿纸面向各方向射出速率均为v的某种带电粒子,带电粒子在磁场中做圆周运动的半径是圆形磁场区域半径的两倍.已知该带电粒子的质量为m、电荷量为q,不考虑带电粒子的重力。(1)推导带电粒子在磁场空间做圆周运动的轨迹半径;(2)求带电粒子通过磁场空间的最大偏转角。[解析](1)带电粒子进入磁场后,受洛伦兹力作用,由牛顿第二定律得Bqv=meq\f(v2,r),则r=eq\f(mv,Bq).(2)粒子的速率均相同,因此粒子轨迹圆的半径均相同,但粒子射入磁场的速度方向不确定,故可以保持圆的大小不变,只改变圆的位置,画出“动态圆”,通过“动态圆”可以观察到粒子运动轨迹均为劣弧,对于劣弧而言,弧越长,弧所对应的圆心角越大,偏转角越大,则运动时间越长,当粒子的轨迹圆的弦长等于磁场直径时,粒子在磁场空间的偏转角最大,sineq\f(φmax,2)=eq\f(R,r)=eq\f(1,2),即φmax=60°。[答案](1)见解析(2)60°“平移圆"模型的应用适用条件速度大小一定,方向一定,但入射点在同一直线上粒子源发射速度大小、方向一定,入射点不同,但在同一直线的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v0,则半径R=eq\f(mv0,qB),如图所示轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行界定方法将半径为R=eq\f(mv0,qB)的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆”法[示例3]如图所示,边长为L的 正方形有界匀强磁场ABCD,带电粒子从A点沿AB方向射入磁场,恰好从C点飞出磁场;若带电粒子以相同的速度从AD的中点P垂直AD射入磁场,从DC边的M点飞出磁场(M点未画出).设粒子从A点运动到C点所用的时间为t1,由P点运动到M点所用时间为t2(带电粒子重力不计),则t1∶t2为()A.2∶1B.2∶3C.3∶2D.eq\r(3)∶eq\r(2)C[画出粒子从A点射入磁场到从C点射出磁场的轨迹,并将该轨迹向下平移,粒子做圆周运动的半径为R=L,从C点射出的粒子运动时间为t1=eq\f(T,4);由P点运动到M点所用时间为t2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船用桁项目运营指导方案
- 利用可再生资源生产电能行业营销策略方案
- 玩具棱镜项目营销计划书
- 侦探服务行业经营分析报告
- 药用薄荷醇项目运营指导方案
- 含药物的糖果产业链招商引资的调研报告
- 人寿保险承保行业市场调研分析报告
- 医用充气软垫产品供应链分析
- 化妆台梳妆台产业链招商引资的调研报告
- 市场调查的设计行业经营分析报告
- 仓库管理系统系统架构及功能技术介绍
- 放射诊疗防护的质量控制与质量保证
- 电动汽车充电桩运营管理策划书
- 《老年护理》-课程思政课程标准
- 中级会计课程设计
- 2024届连云港市工业投资集团校园招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- QC提高岩棉板外墙外保温系统施工质量一次验收合格率-详细
- 玻璃吊装方案
- 肾素-血管紧张素系统
- 三年级上册3.8《安全记心上》课件(共18张PPT)
- 两位数除以一位数(有余数)计算题200道
评论
0/150
提交评论