版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点04概率(二)一、单选题1.某超市计划按月订购一种冷饮,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25℃,需求量为600瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20℃,需求量为100瓶.为了确定6月份的订购计划,统计了前三年6月份各天的最高气温数据,得到下面的频数分布表:最高气温天数45253818以最高气温位于各区间的频率估计最高气温位于该区间的概率.若6月份这种冷饮一天的需求量不超过瓶的概率估计值为0.1,则()A.100 B.300 C.400 D.600【答案】B【分析】根据频率分布表的频率估计概率,进而得解.【详解】这种冷饮一天的需求量不超过300瓶,当且仅当最高气温低于25℃,由表格数据知,最高气温低于25℃的频率为,所以6月份这种冷饮一天的需求量不超过300瓶的概率估计值为0.1.故选:B.2.从2016年1月1日起,“全面二孩”政策在全国范围内实施,许多年轻夫妇都积极地响应国家号召,在六年内生育了二胎,因此在有两个孩子的每户家庭中,若按孩子的性别来进行分类,共会出现三类家庭,分别为:“两个男孩型”家庭,“一男一女孩型”家庭,“两个女孩型”家庭.市消费者协会为了解有两个孩子家庭的某些日常生活消费指数,从该市有两个孩子(假设每胎只生一个小孩,科学研究证明每胎生男生女机会均等)的家庭中随机地抽取户进行调查统计,则估计其中是“一男一女孩型”家庭的户数为()A. B. C. D.【答案】C【分析】根据题意把二胎的所有种类数枚举出来,找出其中“一男一女孩型”所占比例,即可求出抽取的600户中有多少这种类型家庭.【详解】因每胎生男女概率相等,则所有的两孩种类有,①第一胎男孩,第二胎男孩;②第一胎男孩,第二胎女孩;③第一胎女孩,第二胎男孩;④第一胎女孩,第二胎女孩;故“一男一女孩型”所占概率为,则600户中有“一男一女孩型”.故选:C.3.口袋中装有个红球和个黑球,每个球编有不同的号码,现从中取出个球,则互斥而不对立的事件是()A.至少有个红球与至少有个黑球 B.至少有个红球与都是黑球C.至少有个红球与至多有个黑球 D.恰有个红球与恰有个红球【答案】D【分析】利用互斥事件和对立事件的定义逐项分析判断即可【详解】解:对于A,不互斥,如取出2个红球和1个黑球,与至少有个黑球不是互斥事件,所以A不合题意;对于B,至少有个红球与都是黑球不能同时发生,且必有其中1个发生。所以为互斥事件,且为对立事件,所以B不合题意;对于C,不互斥。如取出2个红球和1个黑球,与至多有个黑球不是互斥事件,所以C不合题意;对于D,恰有个红球与恰有个红球不能同时发生,所以为互斥事件,但不对立,如还有3个红球,故选:D4.一商店有奖促销活动中仅有一等奖、二等奖、鼓励奖三个奖项,其中中一等奖的概率为0.1,中二等奖的概率为0.32,中鼓励奖的概率为0.42,则不中奖的概率为()A.0.16 B.0.12 C.0.18 D.0.58【答案】A【分析】从1中减去中一等奖、二等奖、鼓励奖的概率,所得即为不中奖的概率.【详解】由于奖项一等奖、二等奖、鼓励奖和不中奖四个事件是相互独立,且构成事件为必然事件,∴不中奖的概率为:,故选:A.【点睛】本题考查互斥事件的概率计算,属简单题.5.在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为和,则()A. B. C. D.以上三种情况都有可能【答案】B【分析】分别计算和,再比较大小.【详解】方法一:每箱中的黑球被选中的概率为,所以至少摸出一个黑球的概率.方法二:每箱中的黑球被选中的概率为,所以至少摸出一个黑球的概率.,则.故选:B.【点睛】概率计算的不同类型:(1)古典概型、几何概型直接求概率;(2)根据事件间的关系利用概率加法、乘法公式求概率;(3)利用对立事件求概率;(4)判断出特殊的分布列类型,直接套公式求概率.6.某兴趣小组从包括甲、乙的小组成员中任选3人参加活动,若甲、乙至多有一人被选中的概率是,则甲、乙均被选中的概率是A. B. C. D.【答案】B【分析】由事件“甲、乙至多有一人被选中”与事件“甲、乙均被选中”为对立事件,可求得答案【详解】由题意可知事件“甲、乙至多有一人被选中”与事件“甲、乙均被选中”为对立事件,则甲、乙均被选中的概率是.故选:B7.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为()A. B. C. D.【答案】D【分析】先求出对立事件:一次都未投中的概率,然后可得结论.【详解】由题意小明每次投篮不中的概率是,再次投篮都不中的概率是,∴他再次投篮至少投中一次的概率为.故选:D.【点睛】本题考查相互独立事件同时发生的概率公式,在出现至少、至多等词语时,可先求其对立事件的概率,然后由对立事件概率公式得出结论.8.掷一个骰子的试验,事件表示“出现小于5的偶数点”,事件表示“出现小于5的点数”.若表示的对立事件,则一次试验中,事件发生的概率为()A. B. C. D.【答案】C【分析】首先根据题意得到意,,,根据与互斥,利用互斥事件加法公式即可得到答案.【详解】掷一个骰子的试验有6种可能结果.依题意,,,因为表示“出现5点或6点”的事件,表示“出现小于5的偶数点”,所以与互斥,故.故选:C9.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是,通过第二项考核的概率是;乙同学拿到该技能证书的概率是,那么甲、乙两人至少有一人拿到该技能证书的概率是()A. B. C. D.【答案】D【分析】由已知先求得甲取得证书的概率,再求得甲,乙两人都取不到证书的概率,由对立事件的概率公式可得选项.【详解】由已知得甲拿到该技能证书的概率为,则甲,乙两人都没有拿到证书的概率为:,所以甲、乙两人至少有一人拿到该技能证书的概率是,故选:D.【点睛】方法点睛:在解决含有“至少”,“至多”等一类问题的概率问题时,正面求解时情况较复杂,可以求其对立事件的概率,再用1减去所求的对立事件的概率,就是所求的概率.10.抛掷一枚质地均匀的骰子,“向上的点数是”为事件,“向上的点数是”为事件,则下列选项正确的是()A.与是对立事件 B.与是互斥事件C. D.【答案】B【分析】利用事件的关系求解.【详解】由题意知,为不可能事件,表示向上的点数是,所以,事件与事件是互斥事件,不是对立事件.故选:B.11.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与至少有一个红球C.恰好有一个黑球与恰好有两个黑球D.至少有一个黑球与都是红球【答案】C【分析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,逐项判断.【详解】A:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:两个都是黑球,这两个事件不是互斥事件,故错误;B:事件:“至少有一个黑球”与事件:“至少有一个红球”可以同时发生,如:一个红球一个黑球,故错误;C:事件:“恰好有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是红球,两个事件是互斥事件但不是对立事件,故正确D:事件:“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,这两个事件是对立事件,故错误;故选:C二、多选题12.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收垃圾和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾的分类投放情况,现随机抽取了该市三类垃圾箱中总计生活垃圾,经分拣以后统计数据如表(单位:).根据样本估计本市生活垃圾的分类投放情况,则下列说法正确的是()“厨余垃圾”箱“可回收垃圾”箱“其他垃圾”箱厨余垃圾400100100可回收垃圾3024030其他垃圾202060A.厨余垃圾投放正确的概率为B.居民生活垃圾投放错误的概率为C.该市三类垃圾中投放正确的概率最高的是可回收垃圾D.厨余垃圾在“厨余垃圾”箱、“可回收垃圾”箱、“其他垃圾”箱的投放量的方差为18000【答案】ABC【分析】由表依次算出各类垃圾投放正确的概率,再算出厨余垃圾在各垃圾箱投放量的均值和方差即可.【详解】对于A:厨余垃圾的投放的正确的概率为,故A正确;对于B:居民生活垃圾的投放的错误概率,故B正确;对于C:该市三类垃圾中投放正确的概率最高的是“可回收垃圾”,故C正确;对于D:厨余垃圾在“厨余垃圾”箱、“可回收垃圾”箱、“其他垃圾”箱的投放量的平均数,所以,故D错误.故选:ABC.三、填空题13.盒子里装有6个红球,4个白球,从中任取3个球,设事件A表示“3个球中有1个红球,2个白球”,事件B表示“3个球中有2个红球,1个白球”,已知,,则这3个球中既有红球又有白球的概率是___________.【答案】【分析】记事件为“3个球中既有红球又有白球”,则它包含事件和事件,而且事件与事件是互斥的,然后可得答案.【详解】记事件为“3个球中既有红球又有白球”,则它包含事件和事件,而且事件与事件是互斥的所以故答案为:14.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结果相互独立,第局甲当裁判,在前局中乙恰好当次裁判的概率_______.【答案】【分析】前局中乙恰好当次裁判的事件是乙在第二局当裁判与在第三局当裁判事件的和,它们互斥,分别求出它们的概率而得解.【详解】前3局中,因第局甲当裁判,则乙恰好当次裁判的事件A,是乙第二局当裁判的事件A1与乙第三局当裁判的事件A2的和,它们互斥,乙第二局当裁判的事件是乙在第一局输,则;乙第三局当裁判的事件是乙在第一局胜,第二局输,则,所以.故答案为:【点睛】利用已知概率的事件求概率,把所求概率的事件分拆成相互独立事件的积和互斥事件的和是关键.15.北京大学为响应习近平总书记寄语青年人“忠于祖国不负时代,放飞青春梦想实现中华民族伟大复兴”新建立3个社团,若每位同学参加各个社团的可能性相同,每位同学必须参加社团且只能参加其中一个社团,则甲、乙两位同学参加同一社团的概率为_____.【答案】【分析】记3个社团分别为,依题意甲参加社团的概率为,乙参加社团的概率为,根据相互独立事件的乘法公式得到甲和乙都参加某个社团的概率,再根据互斥事件的概率的加法公式可得甲、乙两位同学参加同一社团的概率.【详解】记3个社团分别为,依题意甲参加社团的概率为,乙参加社团的概率为,所以甲和乙都参加社团的概率为,同理可得甲和乙都参加社团的概率为,甲和乙都参加社团的概率为,所以甲、乙两位同学参加同一社团的概率为.故答案为:.【点睛】本题考查了独立事件的乘法公式,考查了互斥事件的加法公式,属于基础题.四、解答题16.习近平总书记指出:“要健全社会心理服务体系和疏导机制、危机干预机制,塑造自尊自信、理性平和、亲善友爱的社会心态.”在2020年新冠肺炎疫情防控阻击战中,心理医生的相关心理疏导起到了重要作用.某心理调查机构为了解市民在疫情期的心理健康状况,随机抽取位市民进行心理健康问卷调查,按所得评分(满分分)从低到高将心理健康状况分为四个等级:调查评分心理等级有隐患一般良好优秀并绘制如图所示的频率分布直方图.已知调查评分在的市民为人.(1)求的值及频率分布直方图中的值;(2)在抽取的心理等级为“有隐患”的市民中,按照调查评分分层抽取人,进行心理疏导.据以往数据统计,经过心理疏导后,调查评分在的市民心理等级转为“良好”的概率为,调查评分在的市民心理等级转为“良好”的概率为,若经过心理疏导后的恢复情况相互独立,试问在抽取的人中,经过心理疏导后,至少有一人心理等级转为“良好”的概率为多少?(3)心理调查机构与该市管理部门设定的预案是:以抽取的样本作为参考,若市民心理健康指数平均值不低于则只需发放心理指导资料,否则需要举办心理健康大讲堂.根据你所学的统计知识,判断该市是否需要举办心理健康大讲堂,并说明理由.(每组数据以区间的中点值代替,心理健康指数=(问卷调查评分/100)【答案】(1)2000,;(2);(3)只需发放心理指导材料,不需要举办心理健康大讲堂活动,理由见解析.【分析】(1)由调查评分在的市民为人及频率可得样本容量;根据频率和为1可得t;(2)由(1)知,根据调查评分在有人,有人,计算出心理等级均达不到良好的概率,由对立事件的概率可得答案;(3)由频率分布直方图估计市民心理健康问卷调查的平均评分及平均值与0.8作比较可得答案.【详解】(1)由已知条件可得,每组的纵坐标的和乘以组距为1,所以,解得.(2)由(1)知,所以调查评分在的人数占调查评分在人数的,若按分层抽样抽取人,则调查评分在有人,有人,因为经过心理疏导后的恢复情况相互独立,所以选出的人经过心理疏导后,心理等级均达不到良好的概率为,所以经过心理疏导后,至少有一人心理等级转为良好的概率为.(3)由频率分布直方图可得,,估计市民心理健康问卷调查的平均评分为,所以市民心理健康指数平均值为,所以只需发放心理指导材料,不需要举办心理健康大讲堂活动.【点睛】本题考查了频率分布直方图的应用及相互独立事件概率的求解,由频率分布直方图中是没有样本数据的,平均值等于每个小长方形面积乘每组横坐标的中点,然后相加求和,且所有矩形的面积之和为1,考查了学生分析数据处理问题的能力.17.2020年春季,受疫情的影响,学校推迟了开学时间.上级部门倡导“停课不停学”,鼓励学生在家学习,复课后,某校为了解学生在家学习的周均时长(单位:小时),随机调查了部分学生,根据他们学习的周均时长,得到如图所示的频率分布直方图.(1)求该校学生学习的周均时长的众数的估计值;(2)估计该校学生学习的周均时长不少于30小时的概率.【答案】(1)25小时;(2)0.3.【分析】(1)根据直方图,频率最大的区间中点横坐标为众数即可求众数;(2)由学习的周均时长不少于30小时的区间有、,它们的频率之和,即为该校学生学习的周均时长不少于30小时的概率.【详解】(1)根据直方图知:频率最大的区间中点横坐标即为众数,∴由频率最大区间为,则众数为;(2)由图知:不少于30小时的区间有、,∴该校学生学习的周均时长不少于30小时的概率.【点睛】本题考查了根据直方图求众数、概率,应用了众数的概念、频率法求概率,属于简单题.18.万源中学扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长30分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间单位:分钟进行调查,按平均每日体育锻炼时间分组统计如下表:分组男生人数216191853女生人数32010211若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.(1)估计我校7000名学生中“锻炼达人”有多少(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动,求男生和女生各抽取了多少人?【答案】(1)(人)(2)男生抽取4人,女生抽取1人.【分析】(1)由表中数据求出“锻炼达人”的频率,从而可计算全校“锻炼达人”的人数;(2)按分层抽样法计算抽取男女生人数.【详解】由表可知,100名学生中“锻炼达人”的人数为10人,将频率视为概率,我校7000名学生中“锻炼达人”为人;由知,100名学生中“锻炼达人”有10人,其中男生8人,女生2人,从10人中按性别分层抽取5人参加体育活动,则男生抽取4人,女生抽取1人.【点睛】本题考查用样本估计总体,考查分层抽样,属于基础题.19.某企业员工人参加“抗疫”宣传活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.
(1)上表是年龄的频数分布表,结合此表与频率分布直方图,求正整数,a,b的值;
(2)假设同组中的每个数据用该组区间的右端点值代替,根据频率分布直方图估计该企业员工的平均年龄;(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,并且在第3组抽的人(其中一人叫甲)中再选出两人做演讲活动,求甲被选中的概率.【答案】(1)500,200,50;(2)41;(3).【分析】(1)根据频率直方图计算得x,a,b;(2)由频率直方图的平均值的计算方法可估计该企业员工的平均年龄;(3)根据比例和分层抽样先求得第3组中抽取的人数.设这四人为甲乙丙丁,列举出所有的基本事件,由古典概率公式可求得答案.【详解】(1),,所以x=500,a=200,b=50;(2),所以估计该企业员工的平均年龄为41;(3)从第3组中抽取的人数为人.设这四人为甲乙丙丁,则所有的基本事件为:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)共6个,故甲被选中的概率为.【点睛】本题考查频率直方图的识别,由频率直方图估算平均值,分层抽样,以及古典概率的计算,属于中档题.20.某校为庆祝中华人民共和国建国周年,以“不忘初心,牢记使命”为主题开展了“唱红歌”比赛,工作人员根据参赛选手的成绩绘制了如下不完整的统计图表:分数段频数频率请根据以上图表提供的信息,解答下列问题:(1)求上表中的数据、的值;(2)通过计算,补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?(4)如果比赛成绩在分以上(含分)的选手为获奖选手,那么我们随机的从本次参赛的所有选手中抽取出一个人,求恰好抽中获奖选手的概率?【答案】(1),;(2)图见解析;(3)分;(4).【分析】(1)根据频数、频率和样本容量三者之间的关系可求得、的值;(2)计算出至分段以及至分段的人数,由此可补充条形图;(3)根据中位数的定义以及条形图可得出中位数所在的分数段;(4)计算出比赛成绩在分的选手所占的频率,由此可得出结论.【详解】(1)总人数(人),,;(2)由(1)的计算知至分段的人数为人,至分段的人数为人,补全条形图如下图所示:(3)比赛成绩在的人数为,比赛成绩在的人数为,因此,比赛成绩的中位数落在分;(4)恰好抽中获奖选手的概率为:.【点睛】本题考查条形图的应用,同时也考查了中位数、频率的计算以及条形统计图的完善,属于基础题.21.有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的(即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出条鱼,检验鱼体中的汞含量与其体重的比值(单位:),数据统计如下:(1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的分位数;(2)有,两个水池,两水池之间有个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过条鱼.(ⅰ)将其中汞的含量最低的条鱼分别放入水池和水池中,若这条鱼的游动相互独立,均有的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;(ⅱ)将其中汞的含量最低的条鱼都先放入水池中,若这条鱼均会独立地且等可能地从其中任意一个小孔由水池进入水池且不再游回水池,求这两条鱼由不同小孔进入水池的概率.【答案】(1)中位数为;众数为;极差为;估计这批鱼该项数据的百分位数约为;(2)(ⅰ);(ⅱ).【分析】(1)由中位数—排序后处于中间的数,如有两个数取其平均数;众数—出现频率最高的数、极差—最大数与最小数的差;百分比位数—数据集中有n个数:当np为整数时,当np不为整数时;即可求出对应值;(2)(ⅰ)记:“两鱼最终均在水池”;:“两鱼最终均在水池”求出概率,由它们的互斥性即可求得两条鱼最终在同一水池的概率;(ⅱ)记:“两鱼同时从第n个小孔通过”且鱼的游动独立,知,而10个事件互斥,则“两鱼同时从一个小孔通过”的概率即可求,它与“两条鱼由不同小孔通过”为互斥事件,进而求得其概率【详解】解:(1)由题意知,数据的中位数为数据的众数为数据的极差为估计这批鱼该项数据的百分位数约为(2)(ⅰ)记“两鱼最终均在水池”为事件,则记“两鱼最终均在水池”为事件,则∵事件与事件互斥,∴两条鱼最终在同一水池的概率为(ⅱ)记“两鱼同时从第一个小孔通过”为事件,“两鱼同时从第二个小孔通过”为事件,依次类推;而两鱼的游动独立∴记“两条鱼由不同小孔进入水池”为事件,则与对立,又由事件,事件,互斥∴即【点睛】本题考查了数据特征值的概念,以及利用条件概率公式,结合互斥事件、独立事件等概念求概率;注意独立事件:多个事件的发生互不相关,且可以同时发生;互斥事件:一个事件发生则另一个事件必不发生,即不能同时发生22.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?【答案】(1);(2)甲与乙进行首场比赛时.【分析】(1)将情况按照第一场比赛甲胜乙、乙胜甲分类,由独立事件的乘法公式计算出概率,再由互斥事件概率的加法公式即可得解;(2)由独立事件的乘法公式计算出概率,再由互斥事件概率的加法公式分别计算出三种情况下甲获得冠军的概率,比较大小即可得解.【详解】(1)设事件为“甲和乙先赛且共进行4场比赛”,则有两类:第一种是甲和乙比赛,甲胜乙,再甲与丙比赛,丙胜甲,再丙与乙比赛,乙胜丙,再进行第四场比赛;第二种是甲和乙比赛,乙胜甲,再乙与丙比赛,丙胜乙,再丙与甲比赛,甲胜丙,再进行第四场比赛;故所求概率,所以甲和乙先赛且共进行4场比赛的概率为;(2)设事件表示甲与乙先赛且甲获得冠军;事件表示甲与丙先赛且甲获得冠军;事件表示乙与丙先赛且甲获得冠军,则;;;因为,所以甲与乙进行首场比赛时,甲获得冠军的概率最大.【点睛】本题考查了互斥事件概率加法公式及独立事件概率乘法公式的应用,考查了运算求解能力与分类讨论思想,属于中档题.23.为普及抗疫知识、弘扬抗疫精神,某学校组织防疫知识竞赛.比赛共分为两轮,每位参赛选手均须参加两轮比赛,若其在两轮比赛中均胜出,则视为赢得比赛.已知在第一轮比赛中,选手甲、乙胜出的概率分别为,;在第二轮比赛中,甲、乙胜出的概率分别为,.甲、乙两人在每轮比赛中是否胜出互不影响.(1)从甲、乙两人中选取1人参加比赛,派谁参赛赢得比赛的概率更大?(2)若甲、乙两人均参加比赛,求两人中至少有一人赢得比赛的概率.【答案】(1)派甲参赛获胜的概率更大;(2).【分析】(1)利用相互独立事件概率乘法公式分别求出甲赢得比赛的概率和乙赢得比赛的概率,由此得解.(2)设表示“甲赢得比赛”,表示“乙赢得比赛”,表示“两人中至少有一个赢得比赛”,,由此能求出两人中至少有一人赢得比赛的概率.【详解】解:(1)设“甲在第一轮比赛中胜出”,“甲在第二轮比赛中胜出”,“乙在第一轮比赛中胜出”,“乙在第二轮比赛中胜出”,则“甲赢得比赛”,.“乙赢得比赛”,.因为,所以派甲参赛获胜的概率更大.(2)由(1)知,设“甲赢得比赛”,“乙贏得比赛”,则;.于是“两人中至少有一人赢得比赛”.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、对立事件概率计算公式等基础知识,考查运算求解能力,属于中档题.24.某中学高一年级由1000名学生,他们选着选考科目的情况如下表所示:科目人数物理化学生物政治历史地理300√√√200√√√100√√√200√√√100√√√100√√√从这1000名学生中随机抽取1人,分别设:A=“该生选了物理”;B=“该生选了化学”;G=“该生选了生物”;D=“该生选了政治”;E=“该生选了历史”;F=“该生选了地理”.(1)求.(2)求.(3)事件A与D是否相互独立?请说明理由.【答案】(1),;(2),;(3)相互独立,理由见解析;【分析】(1)B=“该生选了化学”,得1000名学生中选化学的学生有500名,由此能求出P(B);D=“该生选了政治”;E=“该生选了历史”;F=“该生选了地理”.1000名学生中同时选政治、历史、地理的学生有200名,由此能求出P(DEF).(2)C=“该生选了生物”,E=“该生选了历史”,1000名学生中选生物或历史的学生有800名,由此能求出P(C∪E);B=“该生选了化学”,F=“该生选了地理,1000名学生都选化学或地理,由此能求出P(B∪F).(3)A=“该生选了物理”,D=“该生选了政治”,由题意得选择物理与否与选择政治无关,选择政治与否与选择物理无关,从而事件A与D相互独立.【详解】(1)B=“该生选了化学”,由题意得1000名学生中选化学的学生有:300+100+100=500(名),D=“该生选了政治”;E=“该生选了历史”;F=“该生选了地理”.由题意得1000名学生中同时选政治、历史、地理的学生有200(名),(2)C=“该生选了生物”,E=“该生选了历史”,由题意得1000名学生中选生物或历史的学生有:300+200+200+100=800(名),B=“该生选了化学”,F=“该生选了地理,由题意得1000名学生中选化学或地理的学生有:300+200+100+200+100+100=1000(名),(3)A=“该生选了物理”,D=“该生选了政治”,事件A与D相互独立.理由如下:由题意得选择物理与否与选择政治无关,选择政治与否与选择物理无关,∴事件A与D相互独立.【点睛】本题考查概率的求法,考查古典概型、互斥事件、对立事件、相互独立事件等基础知识,是基础题.25.2019年起,全国地级及以上城市全面启动生活垃圾分类工作,垃圾分类投放逐步成为居民的新时尚.为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了某市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收垃圾”箱“有害垃圾”箱“其他垃圾”箱厨余垃圾300703080可回收垃圾302103030有害垃圾20206020其他垃圾10201060(1)分别估计厨余垃圾和有害垃圾投放正确的概率;(2)假设厨余垃圾在“厨余垃圾”箱、“可回收垃圾”箱、“有害垃圾”箱、“其他垃圾”箱的投放量分别为,,,,其中,.当数据,,,的方差最大时,写出,,,的值(结论不要求证明),并求此时的值.【答案】(1);(2),;.【分析】(1)用厨余垃圾投放正确的数量比上厨余垃圾总量可得“厨余垃圾”投放正确的概率,同理可求出有害垃圾投放正确的概率;(2)当,时,数据,,,的方差最大,求出平均值根据方差计算公式求解即可.【详解】(1)估计“厨余垃圾”投放正确的概率为;估计“有害垃圾”投放正确的概率为.(2)当,时,数据,,,的方差最大.因为,所以此时方差.【点睛】本题考查频率估计概率、样本数据的方差,属于基础题.26.某厂接受
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 月水风的诗句
- 山东名校2025 届高三12月校际联合检测地理试题(含答案)
- 湖北省十堰市茅箭区实验中学教联体2024-2025学年九年级上学期12月月考道德与法治试题(无答案)
- 第六章 质量和密度 综合素质评价卷(含答案)2024-2025学年北师大八年级物理下册
- 高一 人教版 英语 必修一第五单元《Lesson 2 Reading and Thinking (1)》课件
- 模糊综合评价法原理及案例分析-1605028107
- 上海虹桥南丰城案例分析报告
- 《模拟电路分析与实践》对口单招课程试卷9答案
- 高一 人教版 英语 必修第二册《Lesson 2 Reading and Thinking(1)》课件
- 高一 人教A版 数学 上册 第三章《函数的表示法(1)》课件
- 数据迁移服务行业发展趋势预测及战略布局建议报告
- 冲压团队协作力培训
- 干部教育培训工作条例
- 社区工作者2024年终工作总结
- 合作开设服装店协议书
- 《莫扎特传》电影赏析
- GB/T 14227-2024城市轨道交通车站站台声学要求和测量方法
- 综合布线技术设计题单选题100道及答案
- 展览会安保工作计划与安排
- 2024年2个居间人内部合作协议书模板
- 部编版小学道德与法治10我们所了解的环境污染-第二课时课件
评论
0/150
提交评论