2022-2023学年陕西省宝鸡市金台中学高一数学第一学期期末监测试题含解析_第1页
2022-2023学年陕西省宝鸡市金台中学高一数学第一学期期末监测试题含解析_第2页
2022-2023学年陕西省宝鸡市金台中学高一数学第一学期期末监测试题含解析_第3页
2022-2023学年陕西省宝鸡市金台中学高一数学第一学期期末监测试题含解析_第4页
2022-2023学年陕西省宝鸡市金台中学高一数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示的程序框图中,输入,则输出的结果是A.1 B.2C.3 D.42.若函数的图像关于点中心对称,则的最小值为()A. B.C. D.3.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速A.①②④ B.④②③C.①②③ D.④①②4.定义在上的函数满足下列三个条件:①;②对任意,都有;③的图像关于轴对称.则下列结论中正确的是AB.C.D.5.已知幂函数的图像过点,则下列关于说法正确的是()A.奇函数 B.偶函数C.定义域为 D.在单调递减6.如图,向量,,的起点与终点均在正方形网格的格点上,则向量用基底,表示为A. B.C. D.7.函数在区间上的最大值为2,则实数的值为A.1或 B.C. D.1或8.若函数且在上既是奇函数又是增函数,则的图象是A. B.C. D.9.函数定义域为()A. B.C. D.10.若,则值为()A. B.C. D.7二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在上且以3为周期的奇函数,当时,,则时,__________,函数在区间上的零点个数为__________12.设函数f(x)=,则f(-1)+f(1)=______13.设a为实数,若关于x的方程有实数解,则a的取值范围是___________.14.将函数的图象先向下平移1个单位长度,在作关于直线对称的图象,得到函数,则__________.15.由于德国著名数学家狄利克雷对数论、数学分析和物理学的突出贡献,人们将函数命名狄利克雷函数,已知函数,下列说法中:①函数的定义域和值域都是;②函数是奇函数;③函数是周期函数;④函数在区间上是单调函数.正确结论是__________16.已知[x]表示不超过x的最大整数,定义函数f(x)=x-[x].有下列结论:①函数的图象是一条直线;②函数f(x)的值域为[0,1);③方程f(x)=有无数个解;④函数是R上的增函数.其中正确的是____.(填序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数在区间内存在零点,求实数m的取值范围;(2)若关于x的方程有实数根,求实数m的取值范围.18.计算:(1);(2).19.已知函数是偶函数(1)求实数的值;(2)若函数的最小值为,求实数的值;(3)当为何值时,讨论关于的方程的根的个数20.已知函数的图象关于原点对称(1)求实数b的值;(2)若对任意的,有恒成立,求实数k的取值范围21.已知角的终边经过点,,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】输入x=2后,该程序框图的执行过程是:输入x=2,x=2>1成立,y==2,输出y=2选B.2、C【解析】根据函数的图像关于点中心对称,由求出的表达式即可.【详解】因为函数的图像关于点中心对称,所以,所以,解得,所以故选:C【点睛】本题主要考查余弦函数的对称性,还考查了运算求解的能力,属于基础题.3、D【解析】根据回家后,离家的距离又变为可判断(1);由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图像上升的速度越来越快;【详解】离开家不久发现自己把作业本忘在家里,回到家里,这时离家的距离为,故应先选图像(4);途中遇到一次交通堵塞,这这段时间与家的距离必为一定值,故应选图像(1);后来为了赶时间开始加速,则可知图像上升的速度越来越快,故应选图像(2);故选:D【点睛】本题主要考查函数图象的识别,解题的关键是理解题干中表述的变化情况,属于基础题.4、D【解析】先由,得函数周期为6,得到f(7)=f(1);再利用y=f(x+3)的图象关于y轴对称得到y=f(x)的图象关于x=3轴对称,进而得到f(1)=f(5);最后利用条件(2)得出结论因为,所以;即函数周期为6,故;又因为的图象关于y轴对称,所以的图象关于x=3对称,所以;又对任意,都有;所以故选:D考点:函数的奇偶性和单调性;函数的周期性.5、D【解析】设出幂函数的解析式,将所过点坐标代入,即可求出该函数.再根据幂函数的性质的结论,选出正确选项.【详解】设幂函数为,因为函数过点,所以,则,所以,该函数定义域为,则其既不是奇函数也不是偶函数,且由可知,该幂函数在单调递减.故选:D.6、C【解析】由题设有,所以,选C.7、A【解析】化简可得,再根据二次函数的对称轴与区间的位置关系,结合正弦函数的值域分情况讨论即可【详解】因,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或故选:A.8、D【解析】根据题意先得到,,判断其单调性,进而可求出结果.【详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【点睛】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.9、C【解析】由二次根式的被开方数非负和对数的真数大于零求解即可【详解】由题意得,解得,所以函数的定义域为,故选:C10、B【解析】根据两角和的正切公式,结合同角的三角函数关系式中商关系进行求解即可.【详解】由,所以,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.5【解析】(1)当时,,∴,又函数是奇函数,∴故当时,(2)当时,令,得,即,解得,即,又函数为奇函数,故可得,且∵函数是以3为周期的函数,∴,,又,∴综上可得函数在区间上的零点为,共5个答案:,512、3【解析】直接利用函数的解析式,求函数值即可【详解】函数f(x)=,则==3故答案为3【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力13、【解析】令,将原问题转化为方程有正根,利用判别式及韦达定理列出不等式组求解即可得答案.【详解】解:方程可化,令,则,所以原问题转化为方程有正根,设两根分别为,则,解得,所以的取值范围是,故答案为:.14、5【解析】利用平移变换和反函数的定义得到的解析式,进而得解.【详解】函数的图象先向下平移1个单位长度得到作关于直线对称的图象,即的反函数,则,,即,故答案为:5【点睛】关键点点睛:本题考查图像的平移变换和反函数的应用,利用反函数的性质求出的解析式是解题的关键,属于基础题.15、①【解析】由题意知,所以①正确;根据奇函数的定义,x是无理数时,显然不成立,故②错误;当x是有理数时,显然不符合周期函数的定义故③错误;函数在区间上是既不是增函数也不是减函数,故④错误;综上填①.16、②③##③②【解析】画出的图象,即可判断四个选项的正误.【详解】画出函数的图象,如图所示,可以看出函数的图象不是一条直线,故A错误;函数f(x)的值域为,故②正确;方程有无数个解,③正确;函数是分段函数,且函数不是R上的增函数,故④错误.故答案为:②③三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先得出函数在的单调性,再根据零点存在定理建立不等式组,解之可得实数m的取值范围.(2)由已知将原方程等价于存在实数x使成立.再根据基本不等式得出,由此可求得实数m的取值范围.【详解】解:(1)因为函数与在都是增函数,所以函数在也是增函数,因为函数在区间内存在零点,所以解得.所以实数m的取值范围为.(2)关于x的方程有实数根等价于关于x的方程有实数根,所以存在实数x使成立.因为(当且仅当,时取等号),所以,所以实数m的取值范围是.18、(1);(2).【解析】(1)利用指数幂的运算性质计算即可;(2)利用对数的运算性质计算即可.【小问1详解】原式;【小问2详解】原式19、(1)(2)(3)当时,方程有一个根;当时,方程没有根;当或或时,方程有两个根;当时,方程有三个根;当时,方程有四个根【解析】(1)利用偶函数满足,求出的值;(2)对函数变形后利用二次函数的最值求的值;(3)定义法得到的单调性,方程通过换元后得到的根的情况,通过分类讨论最终求出结果.【小问1详解】由题意得:,即,所以,其中,∴,解得:【小问2详解】,∴,故函数的最小值为,令,故的最小值为,等价于,解得:或,无解综上:【小问3详解】由,令,,有由,有,,可得,可知函数为增函数,故当时,函数单调递增,由函数为偶函数,可知函数的增区间为,减区间为,令,有,方程(记为方程①)可化为,整理为:(记为方程②),,当时,有,此时方程②无解,可得方程①无解;当时,时,方程②的解为,可得方程①仅有一个解为;时,方程②的解为,可得方程①有两个解;当时,可得或,1°当方程②有零根时,,此时方程②还有一根为,可得此时方程①有三个解;2°当方程②有两负根时,可得,不可能;3°当方程②有两正根时,可得:,又由,可得,此时方程①有四个根;4°当方程②有一正根一负根时,,可得:或,又由,可得或,此时方程①有两个根,由上知:当时,方程①有一个根;当时,方程①没有根;当或或时,方程①有两个根;当时,方程①有三个根;当时,方程①有四个根【点睛】对于复合函数根的个数问题,要用换元法来求解,通常方法会用到根的判别式,导函数,基本不等式等.20、(1)-1(2)【解析】(1)由得出实数b的值,再验证奇偶性即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论