新疆阿克苏地区阿瓦提县第四中学2023届高一数学第一学期期末联考模拟试题含解析_第1页
新疆阿克苏地区阿瓦提县第四中学2023届高一数学第一学期期末联考模拟试题含解析_第2页
新疆阿克苏地区阿瓦提县第四中学2023届高一数学第一学期期末联考模拟试题含解析_第3页
新疆阿克苏地区阿瓦提县第四中学2023届高一数学第一学期期末联考模拟试题含解析_第4页
新疆阿克苏地区阿瓦提县第四中学2023届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.2.已知,则()A. B.C. D.3.化简:A.1 B.C. D.24.设函数,若,则的取值范围为A. B.C. D.5.如果不等式成立的充分不必要条件是,则实数a的取值范围是()A. B.C.或 D.或6.若角与终边相同,则一定有()A. B.C., D.,7.函数的图像恒过定点,则的坐标是()A. B.C. D.8.函数的单调递增区间为()A. B.C. D.9.若,的终边(均不在y轴上)关于x轴对称,则()A. B.C. D.10.若,则值为()A. B.C. D.711.过点且平行于直线的直线方程为()A. B.C. D.12.已知是第二象限角,且,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知定义在R上的函数满足,且当时,,若对任都有,则m的取值范围是_________14.命题“”的否定是___________.15.已知是偶函数,则实数a的值为___________.16.某同学在研究函数

f(x)=(x∈R)

时,分别给出下面几个结论:①等式f(-x)=-f(x)在x∈R时恒成立;②函数f(x)的值域为(-1,1);③若x1≠x2,则一定有f(x1)≠f(x2);④方程f(x)=x在R上有三个根其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数定义域是,.(1)求函数的定义域;(2)若函数,求函数的最小值18.已知与都是锐角,且,(1)求的值;(2)求证:19.已知点,直线:.(Ⅰ)求过点且与直线垂直的直线方程;(Ⅱ)直线为过点且和直线平行的直线,求平行直线,的距离.20.如图,在直三棱柱中,已知,,设的中点为,求证:(1);(2).21.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,当水车上水斗A从水中浮现时开始计算时间,点A沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过秒后,水斗旋转到点,已知,设点的坐标为,其纵坐标满足(1)求函数的解析式;(2)当水车转动一圈时,求点到水面的距离不低于的持续时间22.已知是第二象限,且,计算:(1);(2)

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C2、C【解析】因为,所以;因为,,所以,所以.选C3、C【解析】根据二倍角公式以及两角差的余弦公式进行化简即可.【详解】原式.故选C.【点睛】这个题目考查了二倍角公式的应用,涉及两角差的余弦公式以及特殊角的三角函数值的应用属于基础题.4、A【解析】根据对数函数的性质单调递增,,列出不等式,解出即可.【详解】∵函数在定义域内单调递增,,∴不等式等价于,解得,故选A.【点睛】本题主要考查了对数不等式的解法,在解题过程中要始终注意函数的定义域,也是易错点,属于中档题.5、B【解析】解不等式,得其解集,进而结合充分、必要条件与集合间的包含关系的对应关系,可得不等式组,则有,(注:等号不同时成立),解可得答案【详解】解不等式,得其解集,,由于不等式成立的充分不必要条件是则有,(注:等号不同时成立);解得故选B.【点睛】本题考查充分、必要条件的判断及运用,注意与集合间关系的对应即可,属于简单题6、C【解析】根据终边相同角的表示方法判断【详解】角与终边相同,则,,只有C选项满足,故选:C7、D【解析】利用指数函数的性质即可得出结果.【详解】由指数函数恒过定点,所以函数的图像恒过定点.故选:D8、C【解析】由解出范围即可.【详解】由,可得,所以函数的单调递增区间为,故选C.9、A【解析】因为,的终边(均不在轴上)关于轴对称,则,,然后利用诱导公式对应各个选项逐个判断即可求解【详解】因为,的终边(均不在轴上)关于轴对称,则,,选项,故正确,选项,故错误,选项,故错误,选项,故错误,故选:10、B【解析】根据两角和的正切公式,结合同角的三角函数关系式中商关系进行求解即可.【详解】由,所以,故选:B11、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A12、B【解析】根据所在象限可判断出,,从而可得答案.【详解】为第二象限角,,,则点位于第二象限.故选:B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、,【解析】作出当,时,的图象,将其图象分别向左、向右平移个单位(横坐标不变,纵坐标变为原来的或2倍),得到函数的图象,令,求得的最大值,可得所求范围【详解】解:因为满足,即;又由,可得,画出当,时,的图象,将在,的图象向右平移个单位(横坐标不变,纵坐标变为原来的2倍),再向左平移个单位(横坐标不变,纵坐标变为原来的倍),由此得到函数的图象如图:当,时,,,,又,所以,令,由图像可得,则,解得,所以当时,满足对任意的,,都有,故的范围为,故答案为:,14、,.【解析】根据特称命题的否定的性质进行求解即可.【详解】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可,命题“,”的否定是“,”,故答案为:,.15、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:16、①②③【解析】由奇偶性的定义判断①正确,由分类讨论结合反比例函数的单调性求解②;根据单调性,结合单调区间上的值域说明③正确;由只有一个根说明④错误【详解】对于①,任取,都有,∴①正确;对于②,当时,,根据函数的奇偶性知时,,且时,,②正确;对于③,则当时,,由反比例函数的单调性以及复合函数知,在上是增函数,且;再由的奇偶性知,在上也是增函数,且时,一定有,③正确;对于④,因为只有一个根,∴方程在上有一个根,④错误.正确结论的序号是①②③.故答案为:①②③【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)由定义域,求得的定义域即为所求;(2)求函数的值域,再代入求最值【详解】(1)的定义域是,即的定义域是,所以的定义域为;(2),令,,,即,所以,当时取到【点睛】求函数值域要先准确求出函数的定义域,注意函数解析式有意义的条件,及题目对自变量的限制条件,复合函数相关问题要注意整体代换思想18、(1)(2)见解析【解析】(1)先确定的取值范围,再利用同角三角函数的平方关系,求得和的值,然后根据,并结合两角和的正弦公式,得解;(2)由,,结合两角和差的正弦公式,分别求出和的值,即可得证【小问1详解】解:因为与都是锐角,所以,,又,,所以,,所以,,所以;【小问2详解】证明:因为,所以①,因为,所以②,①②得,,①②得,,故19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题知直线的斜率为,则所求直线的斜率为,设方程为,代点入直线方程,解得,即可得直线方程;(Ⅱ)因为直线过点且与直线平行,所以两平行线之间的距离等于点到直线的距离,故而求出到直线的距离即可.【详解】(Ⅰ)由题知,直线的斜率为,则所求直线的斜率为,设所求直线方程为,代点入直线方程,解得,故所求直线方程为,即;(Ⅱ)因为直线过点且与直线平行,所以直线,之间的距离等于点到直线的距离,由题知点且到直线的距离所以两平行线,之间的距离为.【点睛】本题考查了利用直线间的垂直平行关系求直线方程,以及相关距离的应用,要求学生对相关知识熟练掌握,属于简单题.20、⑴见解析;⑵见解析.【解析】(1)要证明线面平行,转证线线平行,在△AB1C中,DE为中位线,易得;(2)要证线线垂直,转证线面垂直平面,易证,从而问题得以解决.试题解析:⑴在直三棱柱中,平面,且矩形是正方形,为的中点,又为的中点,,又平面,平面,平面⑵在直三棱柱中,平面,平面,又,平面,平面,,平面,平面,矩形是正方形,,平面,,平面又平面,.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.21、(1);(2)20秒.【解析】(1)根据OA求出R,根据周期T=60求出ω,根据f(0)=-2求出φ;(2)问题等价于求时t的间隔.小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论