上海市金山区金山中学2022-2023学年高一数学第一学期期末考试试题含解析_第1页
上海市金山区金山中学2022-2023学年高一数学第一学期期末考试试题含解析_第2页
上海市金山区金山中学2022-2023学年高一数学第一学期期末考试试题含解析_第3页
上海市金山区金山中学2022-2023学年高一数学第一学期期末考试试题含解析_第4页
上海市金山区金山中学2022-2023学年高一数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.函数在单调递减,且为奇函数.若,则满足的的取值范围是().A. B.C. D.2.在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为A. B.C. D.3.若直线与直线垂直,则()A.1 B.2C. D.4.已知,则等于()A. B.C. D.5.下列函数中为奇函数,且在定义域上是增函数是()A. B.C. D.6.设,,则a,b,c的大小关系是()A. B.C. D.7.若函数的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程的一个近似根(精确度)可以是()A. B.C. D.8.不论为何实数,直线恒过定点()A. B.C. D.9.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是A. B.C. D.10.已知定义在上的奇函数满足,且当时,,则()A. B.C. D.11.将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向右平移个单位,得到的图象对应的解析式是A. B.C. D.12.点关于直线的对称点是A. B.C. D.二、填空题(本大题共4小题,共20分)13.的边的长分别为,且,,,则__________.14.已知,则__________15.设函数,若关于x的方程有四个不同的解,,,,,且,则m的取值范围是_____,的取值范围是__________16.下列命题中正确的是__________.(填上所有正确命题的序号)①若,,则;②若,,则;③若,,则;④若,,,,则三、解答题(本大题共6小题,共70分)17.已知.(1)求的值;(2)求的值.18.已知函数的图象过点,.(1)求函数的解析式;(2)若函数在区间上有零点,求整数k的值;(3)设,若对于任意,都有,求m的取值范围.19.已知定义在上的函数是奇函数(1)求实数,的值;(2)判断函数的单调性;(3)若对任意的,不等式有解,求实数的取值范围20.已知函数(1)若是定义在上的偶函数,求实数的值;(2)在(1)条件下,若,求函数的零点21.定义在R上的函数对任意的都有,且,当时.(1)求的值,并证明是R上的增函数;(2)设,(i)判断的单调性(不需要证明)(ii)解关于x的不等式.22.已知函数f(x)=2sin2(x+)-2cos(x-)-5a+2(1)设t=sinx+cosx,将函数f(x)表示为关于t的函数g(t),求g(t)的解析式;(2)对任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】由已知中函数的单调性及奇偶性,可将不等式化为,解得答案【详解】解:由函数为奇函数,得,不等式即为,又单调递减,所以得,即,故选:D.2、C【解析】设AC=x,则BC=12-x(0<x<12)矩形的面积S=x(12-x)>20∴x2-12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率考点:几何概型3、B【解析】分析直线方程可知,这两条直线垂直,斜率之积为-1.【详解】由题意可知,即故选:B.4、A【解析】利用换元法设,则,然后利用三角函数的诱导公式进行化简求解即可【详解】设,则,则,则,故选:5、D【解析】结合基本初等函数的单调性及奇偶性分别检验各选项即可判断【详解】对于函数,定义域为,且,所以函数为偶函数,不符合题意;对于在定义域上不单调,不符合题意;对于在定义域上不单调,不符合题意;对于,由幂函数的性质可知,函数在定义域上为单调递增的奇函数,符合题意故选:D6、C【解析】根据指数函数与对数函数的性质,求得的取值范围,即可求解.【详解】由对数的性质,可得,又由指数函数的性质,可得,即,且,所以.故选:C.7、C【解析】根据二分法求零点的步骤以及精确度可求得结果.【详解】因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,,所以函数在内有零点,因为,所以满足精确度,所以方程的一个近似根(精确度)是区间内的任意一个值(包括端点值),根据四个选项可知选C.故选:C【点睛】关键点点睛:掌握二分法求零点的步骤以及精确度的概念是解题关键.8、C【解析】将直线方程变形为,即可求得过定点坐标.【详解】根据题意,将直线方程变形为因为位任意实数,则,解得所以直线过的定点坐标为故选:C【点睛】本题考查了直线过定点的求法,属于基础题.9、C【解析】将函数y=sin(x-)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(x-),再向左平移个单位得到的解析式为y=sin((x+)-)=y=sin(x-),故选C10、C【解析】先推导出函数的周期为,可得出,然后利用函数的奇偶性结合函数的解析式可计算出结果.【详解】函数是上的奇函数,且,,,所以,函数的周期为,则.故选:C.【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题.11、D【解析】横坐标伸长倍,则变为;根据左右平移的原则可得解析式.【详解】横坐标伸长倍得:向右平移个单位得:本题正确选项:【点睛】本题考查三角函数图象平移变换和伸缩变换,关键是能够明确伸缩变换和平移变换都是针对于的变化.12、A【解析】设对称点为,则,则,故选A.二、填空题(本大题共4小题,共20分)13、【解析】由正弦定理、余弦定理得答案:14、【解析】将题干中的两个等式先平方再相加,利用两角差的余弦公式可求得结果.【详解】由,,两式相加有,可得故答案为:.15、①.②.【解析】画出的图象,结合图象可得的取值范围及,,再利用函数的单调性可求目标代数式的范围.【详解】的图象如下图所示,当时,直线与的图象有四个不同的交点,即关于x的方程有四个不同的解,,,.结合图象,不难得即又,得即,且,所以,设,易知道在上单调递增,所以,即的取值范围是故答案为:,.思路点睛:知道函数零点的个数,讨论零点满足的性质时,一般可结合初等函数的图象和性质来处理,注意图象的正确的刻画.16、③【解析】对于①,若,,则与可能异面、平行,故①错误;对于②,若,,则与可能平行、相交,故②错误;对于③,若,,则根据线面垂直的性质,可知,故③正确;对于④,根据面面平行的判定定理可知,还需添加相交,故④错误,故答案为③.【方法点晴】本题主要考查线面平行的判定与性质、面面平行的性质及线面垂直的性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.三、解答题(本大题共6小题,共70分)17、(1)3,(2)【解析】(1)由正切的两角和公式,化简求值即可;(2)先利用诱导公式即二倍角公式化简求值即可.试题解析:(1),(2).18、(1);(2)的取值为2或3;(3).【解析】(1)根据题意,得到,求得的值,即可求解;(2)由(1)可得,得到,设,根据题意转化为函数在上有零点,列出不等式组,即可求解;(3)求得的最大值,得出,得到,设,结合单调性和最值,即可求解.【详解】(1)函数的图像过点,所以,解得,所以函数的解析式为.(2)由(1)可知,,令,得,设,则函数在区间上有零点,等价于函数在上有零点,所以,解得,因为,所以的取值为2或3.(3)因为且,所以且,因为,所以的最大值可能是或,因为所以,只需,即,设,在上单调递增,又,∴,即,所以,所以m的取值范围是.【点睛】已知函数的零点个数求解参数的取值范围问题的常用方法:1、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.19、(1),(2)在上为减函数(3)【解析】(1)由,求得,再由,求得,结合函数的奇偶性的定义,即可求解;(2)化简,根据函数的单调性的定义及判定方法,即可求解;(3)根据题意化简不等式为在有解,结合正弦函数和二次函数的性质,即可求解.【小问1详解】解:由题意,定义在上的函数是奇函数,可得,解得,即,又由,可得,解得,所以,又由,所以,.【小问2详解】解:由,设,则,因为函数在上增函数且,所以,即,所以在上为减函数.【小问3详解】解:由函数在上为减函数,且函数为奇函数,因为,即,可得,又由对任意的,不等式有解,即在有解,因为,则,所以,所以,即实数的取值范围是.20、(1);(2)有两个零点,分别为和【解析】(1)由函数为偶函数得即可求实数的值;(2),计算令,则即可.试题解析:(1)解:∵是定义在上的偶函数.∴,即故.经检验满足题意(2)依题意.则由,得,令,则解得.即.∴函数有两个零点,分别为和.21、(1),证明见解析(2)(i)在上是单减单减函数(ii)【解析】(1)令可得,再可得答案,设,则,所以可证明单调性;(2)(i)根据复合函数的单调性法则可得答案;(ii)由题意可得,,结合函数的单调性可得的解为,则原不等式等价于,从而可得答案.【小问1详解】在中,令可得,则令可得,可得任取且,则,所以则即,所以是R上的增函数【小问2详解】(i)由在上是单减单减函数,又单调递增由复合函数的单调性规律可得在上是单减单减函数.(ii)由,所以的解为从而不等式的解为,即即,整理可得即,解得或,所以或所以原不等式的解集为22、(1),;(2)【解析】:(1)首先由两角和的正弦公式可得,进而即可求出的取值范围;接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论