




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知函数一部分图象如图所示,如果,,,则()A. B.C. D.2.已知f(x)=是R上的减函数,那么a的取值范围是()A.(0,1) B.C. D.3.函数的部分图象大致是()A. B.C. D.4.集合{0,1,2}的所有真子集的个数是A.5 B.6C.7 D.85.定义在上的函数满足,且当时,,若关于的方程在上至少有两个实数解,则实数的取值范围为()A. B.C. D.6.如图,在平面四边形ABCD,,,,.若点E为边上的动点,则的取值范围为()A. B.C. D.7.设函数,则使成立的的取值范围是A. B.C. D.8.一个正三棱柱的三视图如图所示,则这个三棱柱的表面积为()A. B.C. D.9.“”是“”的()A.充分必要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件10.已知,则的值是A.1 B.3C. D.11.若,则()A. B.-3C. D.312.函数,则A. B.4C. D.8二、填空题(本大题共4小题,共20分)13.若,则________.14.在中,,则等于______15.设,,依次是方程,,的根,并且,则,,的大小关系是___16._____.三、解答题(本大题共6小题,共70分)17.已知函数,在一个周期内的图象如下图所示.(1)求函数的解析式;(2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和.18.已知定义域为的函数是奇函数.(1)求的值;(2)用函数单调性的定义证明在上是减函数.19.已知函数是定义在上的奇函数,且.(1)求实数m,n的值;(2)用定义证明在上是增函数;(3)解关于t的不等式.20.已知函数,(,,)图象的一部分如图所示.(1)求函数的解析式;(2)当时,求的值域.21.已知集合,或,(Ⅰ)求;(Ⅱ)求22.已知函数,(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)如果,求x的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】先根据函数的最大值和最小值求得和,然后利用图象求得函数的周期,求得,最后根据时取最大值,求得【详解】解:如图根据函数的最大值和最小值得求得函数的周期为,即当时取最大值,即故选C【点睛】本题主要考查了由的部分图象确定其解析式.考查了学生基础知识的运用和图象观察能力2、B【解析】要使函数在上为减函数,则要求①当,在区间为减函数,②当时,在区间为减函数,③当时,,综上①②③解不等式组即可.【详解】令,.要使函数在上为减函数,则有在区间上为减函数,在区间上为减函数且,∴,解得.故选:B【点睛】考查根据分段函数的单调性求参数的问题,根据单调性的定义,注意在分段点处的函数值的关系,属于中档题.3、A【解析】分析函数的奇偶性及其在上的函数值符号,结合排除法可得出合适的选项.【详解】函数的定义域为,,函数为偶函数,排除BD选项,当时,,则,排除C选项.故选:A.4、C【解析】集合{0,1,2}中有三个元素,因此其真子集个数为.故选:C.5、C【解析】把问题转化为函数在上的图象与直线至少有两个公共点,再数形结合,求解作答.【详解】函数满足,当时,,则当时,,当时,,关于的方程在上至少有两个实数解,等价于函数在上的图象与直线至少有两个公共点,函数的图象是恒过定点的动直线,函数在上的图象与直线,如图,观察图象得:当直线过点时,,将此时的直线绕点A逆时针旋转到直线的位置,直线(除时外)与函数在上的图象最多一个公共点,此时或或a不存在,将时的直线(含)绕A顺时针旋转到直线(不含直线)的位置,旋转过程中的直线与函数在上的图象至少有两个公共点,此时,所以实数的取值范围为.故选:C【点睛】方法点睛:图象法判断函数零点个数,作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.6、A【解析】由已知条件可得,设,则,由,展开后,利用二次函数性质求解即可.【详解】∵,因为,,,所以,连接,因为,所以≌,所以,所以,则,设,则,∴,,,,所以,因为,所以.故选:A7、A【解析】,定义域为,∵,∴函数为偶函数,当时,函数单调递增,根据偶函数性质可知:得成立,∴,∴,∴的范围为故答案为A.考点:抽象函数的不等式.【思路点晴】本题考查了偶函数的性质和利用偶函数图象的特点解决实际问题,属于基础题型,应牢记.根据函数的表达式可知函数为偶函数,根据初等函数的性质判断函数在大于零的单调性为递增,根据偶函数关于原点对称可知,距离原点越远的点,函数值越大,把可转化为,解绝对值不等式即可8、D【解析】由三视图可知,该正三棱柱的底面是边长为2cm的正三角形,高为2cm,根据面积公式计算可得结果.【详解】正三棱柱如图,有,,三棱柱的表面积为.故选:D【点睛】本题考查了根据三视图求表面积,考查了正三棱柱结构特征,属于基础题.9、B【解析】由等价于,或,再根据充分、必要条件的概念,即可得到结果.【详解】因为,所以,或,所以“”是“”的充分而不必要条件.故选:B.10、D【解析】由题意结合对数的运算法则确定的值即可.【详解】由题意可得:,则本题选择D选项.【点睛】本题主要考查指数对数互化,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.11、B【解析】利用同角三角函数关系式中的商关系进行求解即可.【详解】由,故选:B12、D【解析】因为函数,所以,,故选D.【思路点睛】本题主要考查分段函数的解析式、指数与对数的运算,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.本题解答分两个层次:首先求出的值,进而得到的值.二、填空题(本大题共4小题,共20分)13、【解析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【详解】因为,由故答案为:14、【解析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.15、【解析】本题首先可以根据分别是方程的根得出,再根据即可得出,然后通过函数与函数的性质即可得出,最后得出结果【详解】因为,,,所以,因为,,所以,,因为函数与函数都是单调递增函数,前者在后者的上方,所以,综上所述,【点睛】本题考查方程的根的比较大小,通常可通过函数性质或者根的大致取值范围进行比较,考查函数思想,考查推理能力,是中档题16、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题三、解答题(本大题共6小题,共70分)17、(1),(2)或;当时,两根之和;当)时,两根之和.【解析】(1)观察图象可得:,根据求出,再根据可得.可得解;(2)如图所示,.作出直线.方程有两个不同的实数根转化为:函数.与函数图象交点的个数.利用图象的对称性质即可得出【详解】(1)观察图象可得:,因为f(0)=1,所以.因为,由图象结合五点法可知,对应于函数y=sinx的点,所以(2)如图所示,作出直线方程有两个不同的实数根转化为:函数与函数图象交点的个数可知:当时,此时两个函数图象有两个交点,关于直线对称,两根和为当时,此时两个函数图象有两个交点,关于直线对称,两根和为【点睛】本题考查了三角函数的图象与性质、方程思想、数形结合方法,考查了推理能力与计算能力,属于中档题18、(1)(2)详见解析【解析】(1)既可以利用奇函数的定义求得的值,也可以利用在处有意义的奇函数的性质求,但要注意证明该值使得函数是奇函数.(2)按照函数单调性定义法证明步骤证明即可.【详解】解:(1)解法一:因为函数是定义在上的奇函数,所以,即,整理得,所以,所以.解法二:因为函数是定义在上的奇函数,所以,即,解得.当时,.因为,所以当时,函数是定义域为的奇函数.(2)由(1)得.对于任意的,且,则.因为,所以,则,而,所以,即.所以函数在上是减函数.【点睛】已知函数奇偶性求参数值的方法有:(1)利用定义(偶函数)或(奇函数)求解.(2)利用性质:如果为奇函数,且在处有意义,则有;(3)结合定义利用特殊值法,求出参数值.定义法证明单调性:(1)取值;(2)作差(作商);(3)变形;(4)定号(与1比较);(5)下结论.19、(1),;(2)证明见解析;(3).【解析】(1)根据和列式计算即可;(2)根据单调性的定义,设,计算,判断其符号即可;(3)利用函数奇偶性得,再根据单调性去掉,可得不等式,解不等式即可.【小问1详解】为奇函数,恒成立,即,,,即即,;【小问2详解】由(1)得,设则即在上是增函数;【小问3详解】因为是定义在上的奇函数由得又在上是增函数,,解得.即不等式解集为20、(1),(2)【解析】(1)根据函数的最大值得到,根据周期得到,根据得到,从而得到.(2)首先根据题意得到,再根据,利用正弦函数图象性质求解值域即可.【详解】(1)因为,,所以.又因为,所以,即,.因为,,,所以,又因为,所以,.(2).因为,所以,所以,即,故函数的值域为.21、(1)(2)【解析】(1)根据交集直接能算;(2)根据补集、并集运算求解.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025在建项目转让合同
- 2025关于房屋交易的合同范本
- 2025标准装修合同范本大全
- 2025年版写字楼租赁合同模板
- 2025借款合同书范本
- 2025合同制定规范私营建筑项目合同
- 2025文具购销合同的范文
- 2025虚构性商品房买卖合同纠纷案
- 《2025设备搬运与运输合同》
- 2025设施升级合同(模板)
- 中药饮片处方点评表-副本(文档良心出品)
- 2024年农村私人土地永久转让协议书
- 工程施工单位资质报审表
- 产后大出血护理课件
- 2024年教育年鉴范本范文
- 供应室院感培训课件
- 客户订单交付管理
- 《集控值班员培训》课件
- 白酒小作坊管理制度
- 2023年北京市石景山区社区工作者招聘考试真题
- 工程部部门岗位职责
评论
0/150
提交评论