版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设函数的图象为,关于点A(2,1)的对称图象为,若直线y=b与有且仅有一个公共点,则b的值为A.0 B.-4C.0或4 D.0或-42.平行线与之间的距离等于()A. B.C. D.3.已知函数在区间上单调递减,则实数的取值范围为()A. B.C. D.4.已知函数在上是增函数,则实数的取值范围是A. B.C. D.5.已知圆方程为,过该圆内一点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是()A.4 B.C.6 D.6.设,则a,b,c的大小关系是A. B.C. D.7.已知α是第三象限的角,且,则()A. B.C. D.8.如图,,下列等式中成立的是()A. B.C. D.9.函数部分图像如图所示,则的值为()A. B.C. D.10.命题“”的否定是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.高三年级的一次模拟考试中,经统计某校重点班30名学生的数学成绩均在[100,150](单位:分)内,根据统计的数据制作出频率分布直方图如右图所示,则图中的实数a=__________,若以各组数据的中间数值代表这组数据的平均水平,估算该班的数学成绩平均值为__________12.函数满足,且在区间上,则的值为____13.若函数满足:对任意实数,有且,当[0,1]时,,则[2017,2018]时,______________________________14.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______15.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.计算求解(1)(2)已知,,求的值17.已知函数(1)求函数的最小正周期和在上的值域;(2)若,求的值18.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.19.(1)已知,求的值;(2)已知,,求的值.20.如图,在平面直角坐标系中,角,的始边均为轴正半轴,终边分别与圆交于,两点,若,,且点的坐标为(1)若,求实数的值;(2)若,求的值21.一次函数是上的增函数,,已知.(1)求;(2)当时,有最大值13,求实数的值.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】先设图像上任一点以及P关于点的对称点,根据点关于点对称的性质,用p的坐标表示的坐标,再把的坐标代入f(x)的解析式进行整理,求出图象的解析式,通过对解析式值域的分析,再结合直线y=b与有且仅有一个公共点,来确定未知量b的值。【详解】设图像上任一点,且P关于点的对称点,则有,解得,又点在函数的图像上,则有,那么图像的函数为,当时,,,当且仅当时取到等号,此时取到最小值4,直线y=b与只有一个公共点,故b=4,同理当时,,,即,此时取到最大值0,当且仅当x=3时取到等号,直线y=b与只有一个公共点,故b=0.综上,b的值为0或4.故选:C【点睛】利用基本不等式求出函数最值时,要注意函数定义域是否包含取等点,本题是一道函数综合题2、C【解析】,故选3、A【解析】先由题意,求出函数的单调递减区间,再由题中条件,列出不等式组求解,即可得出结果.【详解】由题意,令,则,即函数的单调递减区间为,因为函数在区间上单调递减,所以,解得,所以,.故选:A.【点睛】关键点点睛:本题的关键是用不等式法求函数的单调递减区间时,应该令,且该函数的周期应为,则.4、A【解析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”
函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反5、C【解析】由圆的方程可知圆心为,半径,则过圆内一点的最长弦为直径,最短弦为该点与圆心连线的垂线段,进而求解即可【详解】由题,圆心为,半径,过圆内一点的最长弦为直径,故;当时,弦长最短,因为,所以,因为在直径上,所以,所以四边形ABCD的面积是,故选:C【点睛】本题考查过圆内一点弦长的最值问题,考查两点间距离公式的应用,考查数形结合思想6、D【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【详解】,因此可得.故选:D【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.7、B【解析】由已知求得,则由诱导公式可求.【详解】α是第三象限的角,且,,.故选:B.8、B【解析】本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案【详解】因为,所以,所以,即,故选B【点睛】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题9、C【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算.【详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.故选:C.【点睛】本题考查了三角函数的图象与性质,属于中档题.10、D【解析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,按照改量词否结论的法则,所以否定为:,故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①.0.005(或)②.126.5(或126.5分)【解析】根据频率分布直方图的性质得到参数值,进而求得平均值.详解】由频率分布直方图可得:,∴;该班的数学成绩平均值为.故答案为:12、【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.13、【解析】由题意可得:,则,据此有,即函数的周期为,设,则,据此可得:,若,则,此时.14、【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,,即所求二面角大小是.故答案为:15、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)利用对数运算法则直接计算作答.(2)利用对数换底公式及对数运算法则计算作答.【小问1详解】.【小问2详解】因,,所以.17、(1)见解析;(2)【解析】(1)由三角函数中的恒等变换应用化简函数解析式为f(x)=,进而得到函数的周期与值域;(2)由(1)知,利用二倍角余弦公式可得所求.【详解】(1)由已知,,,∴又,则所以的最小正周期为在时的值域为.(2)由(1)知,所以则【点睛】本题考查三角函数的图像与性质,考查三角函数的化简求值,考查恒等变形能力,属于中档题.18、(1)(2)【解析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【点睛】本题考查待定系数法求函数解析式,以及由指数函数的单调性解不等式,属于基础题.19、(1);(2)【解析】(1)根据题意,构造齐次式求解即可;(2)根据,并结合求解即可.【详解】解:(1)因为所以,(2)因为,所以,因为,所以,所以所以所以20、(1);(2)【解析】(1)根据题中条件,先由二倍角的正切公式,求出,再根据任意角的三角函数,即可求出的值;(2)由题中条件,根据两角差的正切公式,先得到,再由同角三角函数基本关系,求出和,利用二倍角公式,以及两角和的余弦公式,即可求出结果.【详解】(1)由题意可得,∴,或∵,∴,即,∴(2)∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024绿化带杂草管理协议样本
- 2024年适用租车服务协议综合范例
- 2024年工程项目食堂供应承包协议
- 2024年土建工程协议示范文本
- 2024在线支付安全规范SET协议
- 2024年个人贷款协议模板大全2
- 医生聘用合同的岗位职责
- 2024年师徒合作协议范本下载
- 2024年度西安二手房销售协议模板
- 2024年金融领域反担保协议参考样式
- XX学校学生“周清”实施方案
- 卫生间维修方案
- 小儿脑瘫的护理课件
- 高二数学期中考试的复习计划
- 螺纹连接的装配教案
- 腹腔穿刺术(仅供参考)课件
- SYB(全)新版最新课件
- 刀具寿命管理规定
- DB43∕T 412-2008 烟花爆竹企业防雷装置检测技术规范
- 风景名胜区保护管理执法检查评分表
- 5.2电动汽车上电与下电功能控制课件
评论
0/150
提交评论