2022-2023学年山东省即墨一中数学高一上期末综合测试试题含解析_第1页
2022-2023学年山东省即墨一中数学高一上期末综合测试试题含解析_第2页
2022-2023学年山东省即墨一中数学高一上期末综合测试试题含解析_第3页
2022-2023学年山东省即墨一中数学高一上期末综合测试试题含解析_第4页
2022-2023学年山东省即墨一中数学高一上期末综合测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图像,可以将函数的图像A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度2.若,,则角的终边在A.第一象限 B.第二象限C.第三象限 D.第四象限3.设全集,,,则如图阴影部分表示的集合为()A. B.C. D.4.设实数t满足,则有()A. B.C. D.5.设则的值A.9 B.C.27 D.6.下列说法正确的是()A.锐角是第一象限角 B.第二象限角是钝角C.第一象限角是锐角 D.第四象限角是负角7.为了得到函数的图象,可以将函数的图象A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.下列函数图象中,不能用二分法求零点的是()A. B.C. D.9.函数的一部分图像如图所示,则()A. B.C. D.10.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.12.设函数,则____________.13.夏季为旅游旺季,青岛某酒店工作人员为了适时为游客准备食物,调整投入,减少浪费,他们统计了每个月的游客人数,发现每年各个月份的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,游客人数基本相同;②游客人数在2月份最少,在8月份最多,相差约200人;③2月份的游客约为60人,随后逐月递增直到8月份达到最多.则用一个正弦型三角函数描述一年中游客人数与月份之间关系为__________;需准备不少于210人的食物的月份数为__________.14.已知,,则的值为___________.15.已知角的顶点为坐标原点,始边为x轴非负半轴,若是角终边上的一点,则______16.已知命题“,”是真命题,则实数的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数的图象关于直线对称,且关于x的方程有两个相等的实数根(1)求函数的值域;18.计算下列各题:(1);(2).19.已知全集,集合,集合.(1)当时,求,;(2)若,求实数的取值范围.20.在中,已知为线段的中点,顶点,的坐标分别为,.(Ⅰ)求线段的垂直平分线方程;(Ⅱ)若顶点的坐标为,求垂心的坐标.21.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若与共线,求x的值;(2)若⊥,求x的值;(3)记f(x)=•,当f(x)取得最小值时,求x的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】因为,所以为了得到函数的图像,可以将函数的图像向右平移个单位长度即可.选B2、D【解析】本题考查三角函数的性质由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为3、D【解析】解出集合、,然后利用图中阴影部分所表示的集合的含义得出结果.【详解】,.图中阴影部分所表示的集合为且.故选:D.【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题.4、B【解析】由,得到求解.【详解】解:因为,所以,所以,,则,故选:B5、C【解析】因为,故,所以,故选C.6、A【解析】根据角的定义判断【详解】锐角大于而小于,是第一象限角,但第一象限角不都是锐角,第二象限角不都是钝角,第四象限角有正角有负角.只有A正确故选:A7、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.8、B【解析】利用二分法求函数零点所满足条件可得出合适的选项.【详解】观察图象与轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B不能用二分法求零点故选:B.9、D【解析】由图可知,,排除选项,由,排除选项,故选.10、A【解析】设球的半径为R,根据已知条件得出正方体上底面截球所得截面圆的半径为2cm,球心到截面圆圆心的距离为,再利用球的性质,求得球的半径,最后利用球体体积公式,即可得出答案【详解】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为故选A【点睛】本题主要考查了球体的体积的计算问题,解决本题的关键在于利用几何体的结构特征和球的性质,求出球体的半径,着重考查了空间想象能力,以及推理与计算能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.12、【解析】依据分段函数定义去求的值即可.【详解】由,可得,则由,可得故答案为:13、①.②.5【解析】设函数为,根据题意,即可求得函数的解析式,再根据题意得出不等式,即可求解.【详解】设该函数为,根据条件①,可知这个函数的周期是12;由②可知,最小,最大,且,故该函数的振幅为100;由③可知,在上单调递增,且,所以,根据上述分析,可得,解得,且,解得,又由当时,最小,当时,最大,可得,且,又因为,所以,所以游客人数与月份之间的关系式为,由条件可知,化简得,可得,解得,因为,且,所以,即只有五个月份要准备不少于210人的食物.故答案为:;.14、【解析】利用和角正弦公式、差角余弦公式及同角商数关系,将目标式化为即可求值.【详解】.故答案为:.15、【解析】根据余弦函数的定义可得答案.【详解】解:∵是角终边上的一点,∴故答案为:.16、【解析】此题实质上是二次不等式的恒成立问题,因为,函数的图象抛物线开口向上,所以只要判别式不大于0即可【详解】解:因为命题“,”是真命题,所以不等式在上恒成立由函数的图象是一条开口向上的抛物线可知,判别式即解得所以实数的取值范围是故答案为:【点睛】本题主要考查全称命题或存在性命题的真假及应用,解题要注意的范围,如果,一定要注意数形结合;还应注意条件改为假命题,有时考虑它的否定是真命题,求出的范围.本题是一道基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)根据对称轴以及判别式等于得出,再由基本不等式得出函数的值域;(2)利用换元法结合对数函数以及二次函数的单调性得出a的值【小问1详解】依题意得,因为,所以,解得,,故,,当时,,当且仅当,即时,等号成立当时,,当且仅当,即时,等号成立故的值域为【小问2详解】,令,则①当时,,因为,所以,解得因为,所以,解得或(舍去)②当时,,因为,所以,解得,解得或(舍去)综上,a的值为或18、(1);(2).【解析】(1)利用指对幂运算性质化简求值;(2)利用对数运算性质化简求值.【小问1详解】原式.【小问2详解】原式.19、(1)A∪B={x|-2<x<3},;(2)(-∞,-2]【解析】(1)求解集合A,B根据集合交并补的定义求解即可;(2)由A∩B=A,得A⊆B,从而得,解不等式求解即可.试题解析:(1)由题得集合A={x|0<<1}={x|1<<3}当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<3}(2)由A∩B=A,得A⊆B..解得m≤-2,即实数m的取值范围为(-∞,-2].20、(Ⅰ);(Ⅱ).【解析】(1)根据中点坐标公式求中点坐标,根据斜率公式求斜率,最后根据点斜式求方程(2)根据垂心为高线的交点,先根据点斜式求两条高线方程,再解方程组求交点坐标,即得垂心的坐标.试题解析:(Ⅰ)∵的中点是,直线的斜率是-3,线段中垂线的斜率是,故线段的垂直平分线方程是,即;(Ⅱ)∵,∴边上的高所在线斜率∵∴边上高所在直线的方程:,即同理∴边上的高所在直线的方程:联立和,得:,∴的垂心为21、(1);(2);(3).【解析】(1)利用两向量平行有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(2)利用两向量垂直有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(3)根据化出一个关于的方程,再利用恒等变化公式将函数转化成,从而找到最小值所取得的x的值.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论