甘肃省白银市会宁县第一中学2022-2023学年高一数学第一学期期末学业水平测试模拟试题含解析_第1页
甘肃省白银市会宁县第一中学2022-2023学年高一数学第一学期期末学业水平测试模拟试题含解析_第2页
甘肃省白银市会宁县第一中学2022-2023学年高一数学第一学期期末学业水平测试模拟试题含解析_第3页
甘肃省白银市会宁县第一中学2022-2023学年高一数学第一学期期末学业水平测试模拟试题含解析_第4页
甘肃省白银市会宁县第一中学2022-2023学年高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知某棱锥的三视图如图所示,则该棱锥的表面积为A. B.C. D.2.某时钟的秒针端点A到中心点O的距离为5cm,秒针绕点O匀速旋转,当时间:t=0时,点A与钟面上标12的点B重合,当t∈[0,60],A,B两点间的距离为d(单位:A.5sintC.5sinπt3.将函数y=sin(2x+)的图象向右平移个单位长度后,得到的图象对应的函数解析式为()A. B.C. D.4.若函数的定义域是,则函数值域为()A. B.C. D.5.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.26.已知函数,则函数的零点所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)7.函数满足:为偶函数:在上为增函数若,且,则与的大小关系是A. B.C. D.不能确定8.设,且,则()A. B.C. D.9.已知,,且,,,那么的最大值为()A. B.C.1 D.210.已知直线,且,则的值为()A.或 B.C. D.或二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数一段图象如图所示则的解析式为______12.计算:()0+_____13.若函数在区间上是单调递增函数,则实数的取值范围是_______.14.已知,均为锐角,,,则的值为______15.若角的终边与以原点为圆心的单位圆交于点,则的值为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.某高校的入学面试中有3道难度相当的题目,李明答对每道题的概率都是0.6,若每位面试者都有三次机会,一旦答对抽到的题目,则面试通过,否则就一直抽题到第三次为止.用Y表示答对题目,用N表示没有答对的题目,假设对抽到的不同题目能否答对是独立的,那么:(1)在图的树状图中填写样本点,并写出样本空间;(2)求李明最终通过面试的概率.17.已知集合为非空数集,定义,.(1)若集合,直接写出集合及;(2)若集合,,且,求证;(3)若集,且,求集合中元素的个数的最大值.18.已知集合,或,(Ⅰ)求;(Ⅱ)求19.某化工企业致力于改良工艺,想使排放的废气中含有的污染物数量逐渐减少.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,第次改良工艺后所排放的废气中含有的污染物数量为,则可建立函数模型,其中是指改良工艺的次数.已知,(参考数据:).(1)试求该函数模型的解析式;(2)若该地环保部门要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺才能使该企业所排放的废气中含有的污染物数量达标?20.已知定义域为的函数是奇函数.(1)求的值;(2)判断并证明函数的单调性;(3)若对任意的不等式恒成立,求实数的取值范围.21.已知函数,.(1)求函数的最小正周期;(2)求函数在区间上的最大值和最小值及相应的的值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】根据三视图可知,几何体是一条侧棱垂直于底面的四棱锥,底面是边长为的正方形,如下图所示,该几何体的四个侧面均为直角三角形,侧面积,底面积,所以该几何体的表面积为,故选D.考点:三视图与表面积.【易错点睛】本题考查三视图与表面积,首先应根据三视图还原几何体,需要一定的空间想象能力,另外解本题时,也可以将几何体置于正方体中,这样便于理解、观察和计算.根据三视图求表面积一定要弄清点、线、面的平行和垂直关系,能根据三视图中的数据找出直观图中的数据,从而进行求解,考查学生空间想象能力和计算能力.2、D【解析】由题知圆心角为tπ30,过O作AB的垂线,通过计算可得d【详解】由题知,圆心角为tπ30,过O作AB的垂线,则故选:D3、B【解析】直接利用函数图像变化原则:“左加右减,上加下减”得到平移后的函数解析式【详解】函数图像向右平移个单位,由得,故选B【点睛】本题考查函数图像变换:“左加右减,上加下减”,需注意“左加右减”时平移量作用在x上,即将变成,是函数图像平移了个单位,而非个单位4、A【解析】根据的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知在上递增,,即.故选:A5、B【解析】将写成分段函数,画出函数图象数形结合,即可求得结果.【详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【点睛】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.6、B【解析】先分析函数的单调性,进而结合零点存在定理,可得函数在区间上有一个零点【详解】解:函数在上为增函数,又(1),(2),函数在区间上有一个零点,故选:7、A【解析】根据题意,由为偶函数可得函数的对称轴为,进而结合函数的单调性可得上为减函数,结合,且分析可得,据此分析可得答案【详解】根据题意,函数满足为偶函数,则函数的对称轴为,则有,又由在上为增函数,则在上为减函数,若,则,又由,则,则有,又由,则,故选A【点睛】本题考查函数的单调性与奇偶性的综合应用,涉及函数的对称性,属于中档题8、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.9、C【解析】根据题意,由基本不等式的性质可得,即可得答案.【详解】根据题意,,,,则,当且仅当时等号成立,即的最大值为1.故选:10、D【解析】当时,直线,,此时满足,因此适合题意;当时,直线,化为,可得斜率,化为,可得斜率∵,∴,计算得出,综上可得:或本题选择D选项.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得到函数的解析式【详解】由函数的图象的顶点的纵坐标可得,再由函数的周期性可得,再由五点法作图可得,故函数的解析式为,故答案为【点睛】本题主要考查函数的部分图象求解析式,由函数的最值求出A,由周期求出,由五点法作图求出的值,属于中档题12、【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式.故答案为:【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.13、【解析】先求出抛物线的对称轴方程,然后由题意可得,解不等式可求出的取值范围【详解】解:函数的对称轴方程为,因为函数在区间上是单调递增函数,所以,解得,故答案为:14、【解析】直接利用两角的和的正切关系式,即可求出结果【详解】已知,均锐角,,,则,所以:,故故答案为【点睛】本题主要考查了三角函数关系式的恒等变换,以及两角和的正切关系式的应用,其中解答中熟记两角和的正切的公式,准确运算是解答的关键,主要考查学生的运算能力和转化能力,属于基础题型15、##【解析】直接根据三角函数定义求解即可.【详解】解:因为角的终边与以原点为圆心的单位圆交于点,所以根据三角函数单位圆的定义得故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)根据树状图表示出样本空间;(2)先计算李明未通过面试的概率,再由对立事件的计算公式求出通过面试的概率.【小问1详解】由题意,样本空间为.样本点的填写如图所示,【小问2详解】可知李明未通过面试的概率为,所以李明通过面试的概率为17、(1),;(2)证明见解析;(3)1347.【解析】(1)根据题目定义,直接得到集合A+及A﹣;(2)根据两集合相等即可找到x1,x2,x3,x4的关系;(3)通过假设A集合{m,m+1,m+2,…,4040},m≤2020,m∈N,求出相应的A+及A﹣,通过A+∩A﹣=∅建立不等关系求出相应的值【详解】(1)根据题意,由,则,;(2)由于集合,,且,所以中也只包含四个元素,即,剩下的,所以;(3)设满足题意,其中,则,∴,,∴,∵,由容斥原理,中最小的元素为0,最大的元素为,∴,∴,∴,实际上当时满足题意,证明如下:设,则,,依题意有,即,故的最小值为674,于是当时,中元素最多,即时满足题意,综上所述,集合中元素的个数的最大值是1347.【点睛】关键点点睛:第三问集合中元素的个数最多时,应满足中的最大值小于中的最小值,另外容斥原理的应用也是解题的关键.18、(1)(2)【解析】(1)根据交集直接能算;(2)根据补集、并集运算求解.【详解】(1)因为,或,所以(2)由或,知,所以.19、(1);(2)6.【解析】(1)将,代入函数模型解解得答案;(2)结合题意,解出指数不等式即可.【小问1详解】根据题意,,所以该函数模型的解析式为.【小问2详解】由(1),令,则,而,则.综上:至少进行6次改良工艺才能使该企业所排放的废气中含有的污染物数量达标.20、(1),;(2)为定义在上的减函数,证明见解析;(3).【解析】(1)由可求得;根据奇函数定义知,由此构造方程求得;(2)将函数整理为,设,可证得,由此可得结论;(3)根据单调性和奇偶性可将不等式化为,结合的范围可求得,由此可得结果.【小问1详解】是定义在上的奇函数,且,,解得:,,,解得:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论