版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A. B.C. D.2.如果函数是定义在上的奇函数,当时,函数的图象如图所示,那么不等式的解集是A. B.C. D.3.设集合,则A. B.C. D.4.已知,,,则的大小关系为A. B.C. D.5.将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是A.事件“甲分得1张白牌”与事件“乙分得1张红牌”B.事件“甲分得1张红牌”与事件“乙分得1张蓝牌”C.事件“甲分得1张白牌”与事件“乙分得2张白牌”D.事件“甲分得2张白牌”与事件“乙分得1张黑牌”6.O为正方体底面ABCD的中心,则直线与的夹角为A. B.C. D.7.从2020年起,北京考生的高考成绩由语文、数学、外语3门统一高考成绩和考生选考的3门普通高中学业水平考试等级性考试科目成绩构成,等级性考试成绩位次由高到低分为A、B、C、D、E,各等级人数所占比例依次为:A等级15%,B等级40%,C等级30%,D等级14%,E等级1%.现采用分层抽样的方法,从参加历史等级性考试的学生中抽取200人作为样本,则该样本中获得B等级的学生人数为()A.30 B.60C.80 D.288.对于实数,“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.若函数f(x)=sin(2x+φ)为R上的偶函数,则φ的值可以是()A. B.C. D.10.“”是“”成立的条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要二、填空题:本大题共6小题,每小题5分,共30分。11.设角的顶点与坐标原点重合,始边与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________12.计算____________13.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________14.设函数,若函数满足对,都有,则实数的取值范围是_______.15.函数的定义域为_______________16.定义:关于的两个不等式和的解集分别为和,则称这两个不等式为相连不等式.如果不等式与不等式为相连不等式,且,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,记.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,则说明理由.18.已知角终边经过点,求19.已知函数.(1)求的最小正周期;(2)求函数的单调增区间;(3)求函数在区间上值域20.已知集合,集合.(1)求集合;(2)求21.若函数的定义域为,集合,若存在非零实数使得任意都有,且,则称为上的-增长函数.(1)已知函数,函数,判断和是否为区间上的增长函数,并说明理由;(2)已知函数,且是区间上的-增长函数,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且为上的增长函数,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为,则2名同学中至少有一名男同学的概率是.故选:A.2、B【解析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.考点:奇函数的性质,余弦函数的图象,数形结合思想.3、B【解析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.4、A【解析】利用利用等中间值区分各个数值的大小【详解】;;故故选A【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待5、C【解析】对于,事件“甲分得1张白牌”与事件“乙分得1张红牌”可以同时发生,不是互斥事件;对于事件“甲分得1张红牌”与事件“乙分得1张蓝牌”可能同时发生,不是互斥事件;对于,事件“甲分得2张白牌”与事件“乙分得1张黑牌”能同时发生,不是互斥事件;但中的两个事件不可能发生,是互斥事件,故选C.6、D【解析】推导出A1C1⊥BD,A1C1⊥DD1,从而D1O⊂平面BDD1,由此得到A1C1⊥D1O【详解】∵O为正方体ABCD﹣A1B1C1D1底面ABCD的中心,∴A1C1⊥BD,A1C1⊥DD1,∵BD∩DD1=D,∴A1C1⊥平面BDD1,∵D1O⊂平面BDD1,∴A1C1⊥D1O故答案为:D【点睛】本题考查与已知直线垂直的直线的判断,是中档题,做题时要认真审题,注意线面垂直的性质的合理运用7、C【解析】根据分层抽样的概念即得【详解】由题可知该样本中获得B等级的学生人数为故选:C8、B【解析】由于不等式的基本性质,“a>b”⇒“ac>bc”必须有c>0这一条件.解:主要考查不等式的性质.当c=0时显然左边无法推导出右边,但右边可以推出左边.故选B考点:不等式的性质点评:充分利用不等式的基本性质是推导不等关系的重要条件9、C【解析】根据三角函数的奇偶性,即可得出φ的值【详解】函数f(x)=sin(2x+φ)为R上的偶函数,则φ=+kπ,k∈Z;所以φ的值可以是.故选C.【点睛】本题考查了三角函数的图象与性质的应用问题,属于基础题10、B【解析】求出不等式的等价条件,结合不等式的关系以及充分条件和必要条件的定义进行判断即可【详解】由不等式“”,解得,则“”是“”成立的必要不充分条件即“”是“”成立的必要不充分条件,故选B【点睛】本题主要考查了充分条件和必要条件的判断,其中解答中结合不等式的关系是解决本题的关键,着重考查了推理与判断能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、##0.5【解析】利用余弦函数的定义即得.【详解】∵角的终边上一点的坐标为,∴.故答案为:.12、5【解析】由分数指数幂的运算及对数的运算即可得解.【详解】解:原式,故答案为:5.【点睛】本题考查了分数指数幂的运算及对数的运算,属基础题.13、3【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.【详解】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积故答案为:314、【解析】首先根据题意可得出函数在上单调递增;然后根据分段函数单调性的判断方法,同时结合二次函数的单调性即可求出答案.【详解】因为函数满足对,都有,所以函数在上单调递增.当时,,此时满足在上单调递增,且;当时,,其对称轴为,当时,上单调递增,所以要满足题意,需,即;当时,在上单调递增,所以要满足题意,需,即;当时,单调递增,且满足,所以满足题意.综上知,实数的取值范围是.故答案为:.15、【解析】由题可知,解不等式即可得出原函数的定义域.【详解】对于函数,有,即,解得,因此,函数的定义域为.故答案为:.16、##【解析】二次不等式解的边界值即为与之对应的二次方程的根,利用根与系数的关系可得,整理得,结合范围判定求值【详解】设的解集为,则的解集为由二次方程根与系数的关系可得∴,即∴,即又∵,则∴,即故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)奇函数,理由见解析;(3)不存在,理由见解析.【解析】(1)分别求f(x)和g(x)定义域,F(x)为这两个定义域的交集;(2)先判断定义域是否关于原点对称,再判断F(-x)与F(x)的关系;(3)先根据定义域和值域求出m,n,a的范围,再利用单调性将问题转化为方程有解问题.【小问1详解】由题意知要使有意义,则有,得所以函数的定义域为:【小问2详解】由(1)知函数F(x)的定义域为:,关于原点对称,函数为上的奇函数.【小问3详解】,假设存在这样的实数,则由可知令,则在上递减,在上递减,是方程,即有两个在上的实数解问题转化为:关于的方程在上有两个不同的实数解令,则有,解得,又,∴故这样的实数不存在.18、7【解析】要求值的三角函数式可化简为,再利用任意角三角函数的定义求出,代入即得所求【详解】因为角终边经过点,则又19、(1);(2);(3).【解析】(1)根据二倍角公式和诱导公式,结合辅助角公式可求得解析式,从而利用周期公式可求得周期;(2)利用整体代换即可求单调增区间;(3)由得,从而可得的取值范围.【详解】(1),所以最小正周期(2)由,得,所以函数的单调递增区间是.(3)由得,则,所以20、(1);(2)【解析】⑴解不等式求得集合⑵根据已知的集合,集合,运用交集的运算即可求得解析:(1)由已知得.(2).21、(1)是,不是,理由见解析;(2);(3).【解析】(1)利用给定定义推理判断或者反例判断而得;(2)把恒成立的不等式等价转化,再求函数最小值而得解;(3)根据题设条件,写出函数f(x)的解析式,再分段讨论求得,最后证明即为所求.【详解】(1)g(x)定义域R,,g(x)是,取x=-1,,h(x)不是,函数是区间上的增长函数,函数不是;(2)依题意,,而n>0,关于x的一次函数是增函数,x=-4时,所以n2-8n>0得n>8,从而正整数n的最小值为9;(3)依题意,,而,f(x)在区间[-a2,a2]上是递减的,则x,x+4不能同在区间[-a2,a2]上,4>a2-(-a2)=2a2,又x∈[-2a2,0]时,f(x)≥0,x∈[0,2a2]时,f(x)≤0,若2a2<4≤4a2,当x=-2a2时,x+4∈[0,2a2],f(x+4)≤f(x)不符合要求,所以4a2<4,即-1<a<1.因为:当4a2<4时,①x+4≤-a2,f(x+4)>f(x)显然成立;②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 探秘书海:字里行间的智慧
- 一年来的财务工作总结
- 2023年员工三级安全培训考试题及完整答案(全优)
- 2023年-2024年项目安全培训考试题含答案(精练)
- 2023-2024年项目部安全管理人员安全培训考试题原创题
- 2023-2024年企业主要负责人安全培训考试题答案可打印
- 新生军训心得体会400字10篇
- 科学实验教学
- 药物代谢预测与智能模拟研究-洞察分析
- 铁路运营成本控制-洞察分析
- 通力电梯KCE电气系统学习指南
- 风电场岗位任职资格考试题库大全-下(填空题2-2)
- 九年级数学特长生选拔考试试题
- 幼儿园交通安全宣传课件PPT
- 门窗施工组织设计与方案
- 健身健美(课堂PPT)
- (完整版)财务管理学课后习题答案-人大版
- 锚索试验总结(共11页)
- 移动脚手架安全交底
- 人教版“课标”教材《统计与概率》教学内容、具体目标和要求
- 矩形钢板水箱的设计与计算
评论
0/150
提交评论