上海市上海交大附属中学2022年高一数学第一学期期末检测试题含解析_第1页
上海市上海交大附属中学2022年高一数学第一学期期末检测试题含解析_第2页
上海市上海交大附属中学2022年高一数学第一学期期末检测试题含解析_第3页
上海市上海交大附属中学2022年高一数学第一学期期末检测试题含解析_第4页
上海市上海交大附属中学2022年高一数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.下列说法正确的是()A.向量与共线,与共线,则与也共线B.任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行2.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则3.在下列各图中,每个图的两个变量具有线性相关关系的图是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)4.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④5.函数的部分图象大致为()A B.C. D.6.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C. D.7.给定函数:①;②;③;④,其中在区间上单调递减的函数序号是()A.①② B.②③C.③④ D.①④8.的值域是()A. B.C. D.9.设函数f(x)=2-x,x≤01,x>0,则满足A.(-∞,-1]C.(-1,0) D.(-10.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是A. B.C. D.11.为了鼓励大家节约用水,北京市居民用水实行阶梯水价,其中每户的户年用水量与水价的关系如下表所示:分档户年用水量(立方米)水价(元/立方米)第一阶梯0-180(含)5第二阶梯181-260(含)7第三阶梯260以上9假设居住在北京的某户家庭2021年的年用水量为200m3,则该户家庭A.1800元 B.1400元C.1040元 D.1000元12.已知函数是定义在上奇函数.且当时,,则的值为A. B.C. D.2二、填空题(本大题共4小题,共20分)13.潮汐是发生在沿海地区的一种自然现象,是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动.习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流.早先的人们为了表示生潮的时刻,把发生在早晨的高潮叫潮,发生在晚上的高潮叫汐,这是潮汐名称的由来.下表中给出了某市码头某一天水深与时间的关系(夜间零点开始计时).时刻(t)024681012水深(y)单位:米5.04.84.74.64.44.34.2时刻(t)141618202224水深(y)单位:米4.34.44.64.74.85.0用函数模型来近似地描述这些数据,则________.14.设函数,若函数满足对,都有,则实数的取值范围是_______.15.若函数关于对称,则常数的最大负值为________16.已知,,则的值为三、解答题(本大题共6小题,共70分)17.在区间上,如果函数为增函数,而函数为减函数,则称函数为“弱增”函数.试证明:函数在区间上为“弱增”函数.18.若函数在定义域内存在实数,使得成立,则称函数有“飘移点”Ⅰ试判断函数及函数是否有“飘移点”并说明理由;Ⅱ若函数有“飘移点”,求a的取值范围19.已知,.(1)若,求;(2)若,求实数的取值范围.20.已知直线:的倾斜角为(1)求a;(2)若直线与直线平行,且在y轴上的截距为-2,求直线与直线的交点坐标21.已知二次函数的图象关于直线对称,且关于x的方程有两个相等的实数根(1)求函数的值域;(2)若函数(且)在上有最小值﹣2,最大值7,求a的值22.已知函数(1)若是偶函数,求a值;(2)若对任意,不等式恒成立,求a的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据共线向量(即平行向量)定义即可求解.【详解】解:对于A:可能是零向量,故选项A错误;对于B:两个向量可能在同一条直线上,故选项B错误;对于C:因为与任何向量都是共线向量,所以选项C正确;对于D:平行向量可能在同一条直线上,故选项D错误故选:C.2、A【解析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.3、D【解析】由线性相关的定义可知:(2)中两变量线性正相关,(3)中两变量线性负相关,故选:D考点:变量线性相关问题4、D【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D5、C【解析】根据题意,分析可得函数为奇函数,当时,有,利用排除法分析可得答案.详解】解:根据题意,对于函数,有函数,即函数为奇函数,图象关于原点对称,故排除A、B;当时,,则恒有,排除D;故选:C.6、D【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x不等式,属于基础题7、B【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.8、A【解析】先求得的范围,再由单调性求值域【详解】因,所以,又在时单调递增,所以当时,函数取得最大值为,所以值域是,故选:A.9、D【解析】画出函数的图象,利用函数的单调性列出不等式转化求解即可【详解】解:函数f(x)=2满足f(x+1)<f(2x),可得2x<0≤x+1或2x<x+1⩽0,解得x∈(-故选:D10、C【解析】若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则函数f(x)=|2x﹣t|和函数F(x)=|﹣t|在[1,2]上单调性相同,则(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,进而得到答案【详解】∵函数y=f(x)与y=F(x)的图象关于y轴对称,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故答案为:C【点睛】(1)本题主要考查不动点定义及利用定义解答数学问题的能力,考查指数函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)正确理解不动区间的定义,得到(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,是解答的关键11、C【解析】结合阶梯水价直接求解即可.【详解】由表可知,当用水量为180m3时,水费为当水价在第二阶段时,超出20m3,水费为则年用水量为200m3,水价为故选:C12、B【解析】化简,先求出的值,再根据函数奇偶性的性质,进行转化即可得到结论【详解】∵,∴,是定义在上的奇函数,且当时,,∴,即,故选B【点睛】本题主要考查函数值的计算,考查了对数的运算以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题二、填空题(本大题共4小题,共20分)13、##【解析】根据题意条件,结合表内给的数据,通过一天内水深的最大值和最小值,即可列出关于、之间的关系,通过解方程解出、,即可求解出答案.【详解】由表中某市码头某一天水深与时间的关系近似为函数,从表中数据可知,函数的最大值为5.0,最小值为4.2,所以,解得,,故.故答案为:或写成.14、【解析】首先根据题意可得出函数在上单调递增;然后根据分段函数单调性的判断方法,同时结合二次函数的单调性即可求出答案.【详解】因为函数满足对,都有,所以函数在上单调递增.当时,,此时满足在上单调递增,且;当时,,其对称轴为,当时,上单调递增,所以要满足题意,需,即;当时,在上单调递增,所以要满足题意,需,即;当时,单调递增,且满足,所以满足题意.综上知,实数的取值范围是.故答案为:.15、【解析】根据函数的对称性,利用,建立方程进行求解即可【详解】若关于对称,则,即,即,则,则,,当时,,故答案为:16、3【解析】,故答案为3.三、解答题(本大题共6小题,共70分)17、见解析【解析】根据定义,只要证明函数在是单调减函数即可,这可以通过单调减函数的定义去证明.证明:设任意,且,由于,所以在区间上,为增函数.令,则有:.由于,则且,故.故在区间上,函数为减函数.由“弱增”函数的定义可知,函数在区间上为“弱增”函数.18、(Ⅰ)函数有“飘移点”,函数没有“飘移点”.证明过程详见解析(Ⅱ)【解析】Ⅰ按照“飘移点”的概念,只需方程有根即可,据此判断;Ⅱ由题得,化简得,可得,可求>,解得a范围【详解】Ⅰ函数有“飘移点”,函数没有“飘移点”,证明如下:设在定义域内有“飘移点”,所以:,即:,解得:,所以函数在定义域内有“飘移点”是0;设函数有“飘移点”,则,即由此方程无实根,与题设矛盾,所以函数没有飘移点Ⅱ函数的定义域是,因为函数有“飘移点”,所以:,即:,化简可得:,可得:,因为,所以:,所以:,因为当时,方程无解,所以,所以,因为函数的定义域是,所以:,即:,因为,所以,即:,所以当时,函数有“飘移点”【点睛】本题考查了函数的方程与函数间的关系,即利用函数思想解决方程根的问题,利用方程思想解决函数的零点问题,由转化为关于方程在有解是本题关键.19、(1);(2).【解析】(1)根据题意,分别求出集合、,即可得到;(2)根据题意得,结合,即可得到实数的取值范围.【详解】(1)当时,,或,因此.(2)由(1)知,或,故,又因,所以,解得,故实数的取值范围是20、(1)-1;(2)(4,2).【解析】(1)根据倾斜角和斜率的关系可得,即可得a值.(2)由直线平行有直线为,联立直线方程求交点坐标即可.【小问1详解】因为直线的斜率为,即,故【小问2详解】依题意,直线的方程为将代入,得,故所求交点的(4,2)21、(1)(2)或【解析】(1)根据对称轴以及判别式等于得出,再由基本不等式得出函数的值域;(2)利用换元法结合对数函数以及二次函数的单调性得出a的值【小问1详解】依题意得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论