版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.函数,x∈R在()A.上是增函数B.上是减函数C.上是减函数D.上是减函数2.已知向量,则锐角等于A.30° B.45°C.60° D.75°3.已知函数,若,则恒成立时的范围是()A. B.C. D.4.如图中的图象所表示的函数的解析式为()A.BC.D.5.已知,,则在方向上的投影为()A. B.C. D.6.函数零点的个数为()A.4 B.3C.2 D.07.若,,则()A. B.C. D.8.函数的零点所在区间为()A. B.C. D.9.下列有关命题的说法错误的是()A.的增区间为B.“”是“-4x+3=0”的充分不必要条件C.若集合中只有两个子集,则D.对于命题p:.存在,使得,则p:任意,均有10.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱 B.棱台C.圆柱 D.圆台11.若函数的图象如图所示,则下列函数与其图象相符的是A. B.C. D.12.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R).则“f(x)是偶函数“是“A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题(本大题共4小题,共20分)13.已知定义域为R的函数,满足,则实数a的取值范围是______14.已知,则_________.15.已知函数,若函数图象恒在函数图象的下方,则实数的取值范围是__________.16.已知,且,写出一个满足条件的的值:______.三、解答题(本大题共6小题,共70分)17.如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD,,若(1)求证:(2)求三棱锥的体积.18.已知.(1)求函数的定义域;(2)判断函数的奇偶性,并加以说明;(3)求的值.19.在直角坐标平面内,角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,分别求sinα、cosα、tanα的值20.设为奇函数,为常数.(1)求的值(2)若对于上的每一个的值,不等式恒成立,求实数的取值范围.21.有一种新型的洗衣液,去污速度特别快,已知每投放个(,且)单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用.(1)若只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,求的值;(2)若只投放一次个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,则在第分钟时洗衣液是否还能起到有效去污的作用?请说明理由.22.为适应市场需求,某公司决定从甲、乙两种类型工业设备中选择一种进行投资生产,根据公司自身生产经营能力和市场调研,得出生产经营这两种工业设备的有关数据如下表:类别年固定成本每台产品原料费每台产品售价年最多可生产甲设备100万元m万元50万元200台乙设备200万元40万元90万元120台假定生产经营活动满足下列条件:①年固定成本与年生产的设备台数无关;②m为待定常数,其值由生产甲种设备的原料价格决定,且m∈[30,40];③生产甲种设备不需要支付环保、专利等其它费用,而生产x台乙种设备还需支付环保,专利等其它费用0.25x2万元;④生产出来的设备都能在当年全部销售出去(Ⅰ)若该公司选择投资生产甲设备,则至少需要年生产a台设备,才能保证对任意m∈[30,40],公司投资生产都不会赔本,求a的值;(Ⅱ)公司要获得最大年利润,应该从甲、乙两种工业设备中选择哪种设备投资生产?请你为该公司作出投资选择和生产安排
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】化简,根据余弦函数知识确定正确选项.【详解】,所以在上递增,在上递减.B正确,ACD选项错误.故选:B2、B【解析】因为向量共线,则有,得,锐角等于45°,选B3、B【解析】利用条件f(1)<0,得到0<a<1.f(x)在R上单调递减,从而将f(x2+tx)<f(x﹣4)转化为x2+tx>x﹣4,研究二次函数得解.【详解】∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是定义域为R的奇函数,∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,∴,又∵a>0,且a≠1,∴0<a<1∵ax单调递减,a﹣x单调递增,∴f(x)在R上单调递减不等式f(x2+tx)+f(4﹣x)<0化为:f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5故答案为B【点睛】本题主要考查函数的奇偶性和单调性,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.4、B【解析】分段求解:分别把0≤x≤1及1≤x≤2时解析式求出即可【详解】当0≤x≤1时,设f(x)=kx,由图象过点(1,),得k=,所以此时f(x)=x;当1≤x≤2时,设f(x)=mx+n,由图象过点(1,),(2,0),得,解得所以此时f(x)=.函数表达式可转化为:y=|x-1|(0≤x≤2)故答案为B【点睛】本题考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得5、A【解析】利用向量数量积的几何意义以及向量数量积的坐标表示即可求解.【详解】,,在方向上的投影为:.故选:A【点睛】本题考查了向量数量积的几何意义以及向量数量积的坐标表示,考查了基本运算求解能力,属于基础题.6、A【解析】由,得,则将函数零点的个数转化为图象的交点的个数,画出两函数的图象求解即可【详解】由,得,所以函数零点的个数等于图象的交点的个数,函数的图象如图所示,由图象可知两函数图象有4个交点,所以有4个零点,故选:A7、C【解析】由题可得,从而可求出,即得.【详解】∵所以,又因为,,所以,即,所以,又因为,所以,故选:C8、B【解析】根据零点存在性定理即可判断求解.【详解】∵f(x)定义域为R,且f(x)在R上单调递增,又∵f(1)=-10<0,f(2)=19>0,∴f(x)在(1,2)上存在唯一零点.故选:B.9、C【解析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程有一根判断;D.由命题p的否定为全称量词命题判断.【详解】A.令,由,解得,由二次函数的性质知:t在上递增,在上递减,又在上递增,由复合函数的单调性知:在上递增,故正确;B.当时,-4x+3=0成立,故充分,当-4x+3=0成立时,解得或,故不必要,故正确;C.若集合中只有两个子集,则集合只有一个元素,即方程有一根,当时,,当时,,解得,所以或,故错误;D.因为命题p:.存在,使得存在量词命题,则其否定为全称量词命题,即p任意,均有,故正确;故选:C10、D【解析】由三视图知,从正面和侧面看都是梯形,从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台,则该几何体可以是圆台故选D11、B【解析】由函数的图象可知,函数,则下图中对于选项A,是减函数,所以A错误;对于选项B,的图象是正确的;对C,是减函数,故C错;对D,函数是减函数,故D错误。故选B12、B【解析】利用必要不充分条件的概念,结合三角函数知识可得答案.【详解】若φ=π2,则f(x)=Asin(ωx+π若f(x)=Asin(ωx+φ)为偶函数,则φ=kπ+π2,k∈Z,所以“f(x)是偶函数“是“φ=π故选:B【点睛】关键点点睛:掌握必要不充分条件的概念是解题关键.二、填空题(本大题共4小题,共20分)13、【解析】先判断函数奇偶性,再判断函数的单调性,从而把条件不等式转化为简单不等式.【详解】由函数定义域为R,且,可知函数为奇函数.,令则,令则即在定义域R上单调递增,又,由此可知,当时,即,函数即为减函数;当时,即,函数即为增函数,故函数在R上的最小值为,可知函数在定义域为R上为增函数.根据以上两个性质,不等式可化为,不等式等价于即解之得或故答案为14、【解析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在15、【解析】作出和时,两个函数图象,结合图象分析可得结果.【详解】当时,,,两个函数的图象如图:当时,,,两个函数的图象如图:要使函数的图象恒在函数图象的下方,由图可知,,故答案为:.16、0(答案不唯一)【解析】利用特殊角的三角函数值求解的值.【详解】因为,所以,,则,或,,同时满足即可.故答案为:0三、解答题(本大题共6小题,共70分)17、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)在等腰梯形中,易得,即又由已知,可得平面,利用面面垂直判定定理可得平面平面.(Ⅱ)求三棱锥的体积,关键是求三棱锥的高,如果不好求,可以换底,本题这样容易求出三棱锥的体积为试题解析:证明:(Ⅰ)在等腰梯形中,∵,∴又∵,∴,∴,即又∵,∴平面,又∵平面,∴平面平面(Ⅱ)∵∵平面,且,∴,∴三棱锥的体积为考点:线面垂直及求三棱锥体积【方法点睛】(1)证明面面垂直常用面面垂直的判定定理,即利用线面垂直,证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.或定义法利用线面垂直的判断定理证明线面垂直,条件齐全,证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高,中线和顶角的角平分线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形等等;(2)利用棱锥的体积公式求体积,在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算18、(1)(2)偶函数(3)【解析】(1)根据定义域的要求解出定义域即可;(2)奇偶性的证明首先定义域对称,再求解,得,所以为偶函数;(3)按照对数计算公式求解试题解析:(1)由得所以函数的域为(2)因为函数的域为又所以函数为偶函数(3)19、【解析】由题意利用任意角的三角函数的定义,求得sinα、cosα、tanα的值【详解】解:角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,∴x=1,y=-2,r=|OA|=3,∴sinα==-、cosα==、tanα==-2【点睛】本题主要考查任意角的三角函数的定义,属于基础题20、(1);(2).【解析】(1)根据函数为奇函数求参数值,注意验证是否符合题设.(2)将问题转化为在上恒成立,根据解析式判断的区间单调性,即可求的范围.小问1详解】由题设,,∴,即,故,当时,,不成立,舍去;当时,,验证满足.综上:.【小问2详解】由,即,又为增函数,由(1)所得解析式知:上递增,∴在单调递增-故,故.21、(1);(2)分钟;(3)见详解.【解析】(1)由只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,根据已知可得,,代入可求出的值;(2)由只投放一次个单位的洗衣液,可得,分、两种情况解不等式即可求解;(3)令,由题意求出此时的值并与比较大小即可.【详解】(1)因为,当两分钟时水中洗衣液的浓度为克/升时,可得,即,解得;(2)因为,所以,当时,,将两式联立解之得;当时,,将两式联立解之得,综上可得,所以若只投放一次个单位的洗衣液,则有效去污时间可达分钟;(3)当时,由题意,因为,所以在第分钟时洗衣液能起到有效去污的作用.【点睛】本题主要考查分段函数模型的选择和应用,其中解答本题的关键是正确理解水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用,属中等难度题.22、(Ⅰ)10(Ⅱ)详见解析【解析】(Ⅰ)由年销售量为a台,按利润的计算公式求得利润,再由利润大于等于0,分离参数a求解;(Ⅱ)分别写出投资生产甲、乙两种工业设备的利润函数,由函数的单调性及二次函数的性质求函数的最大值,然后作出比较得答案【详解】(Ⅰ)由年销售a台甲设备,公司年获利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函数f(m)=在[30,40]上为增函数,则f(m)max=10,∴a≥10则对任意m∈[30,40],公司投资生产都不会赔本,a的值为10台;(Ⅱ)由年销售量为x台,按利润的计算公式,有生产甲、乙两设备的年利润y1,y2分别为:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100为增函数,又∵0≤x≤200,x∈N,∴x=200时,生产甲设备的最大年利润为(50-m)×200-100=9900-200m(万元)又y2=-0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国孕妇装市场竞争状况及投资趋势分析报告
- 2024-2030年中国多腔高速半自动吹瓶机资金申请报告
- 2024-2030年中国啤酒行业发展规模及前景趋势分析报告
- 2024-2030年中国厢式货车行业市场发展格局及未来投资潜力分析报告
- 2024-2030年中国卸妆产品市场营销模式及发展竞争力分析报告版
- 2024年版摩托车销售合同3篇
- 2024年度环保型砂石生产设备采购合同协议2篇
- 2021-2022学年河南省渑池高级中学高一月考数学试卷
- 2025年哈尔滨货运从业资格证模拟考试0题b2b
- 2025年鹤壁道路货运从业资格证考试
- 海洋平台深水管道高效保温技术
- 《新疆大学版学术期刊目录》(人文社科)
- 充电桩维保投标方案
- 《如何写文献综述》课件
- 肛瘘LIFT术式介绍
- 通过《古文观止》选读了解古代文学的社会功能与价值
- 语言本能:人类语言进化的奥秘
- 职业生涯规划(图文)课件
- 2024版国开电大专科《EXCEL在财务中的应用》在线形考(形考作业一至四)试题及答案
- 能源管理系统平台软件数据库设计说明书
- 中外园林史第七章-中国近现代园林发展
评论
0/150
提交评论