湖北黄冈2022-2023学年高一数学第一学期期末检测试题含解析_第1页
湖北黄冈2022-2023学年高一数学第一学期期末检测试题含解析_第2页
湖北黄冈2022-2023学年高一数学第一学期期末检测试题含解析_第3页
湖北黄冈2022-2023学年高一数学第一学期期末检测试题含解析_第4页
湖北黄冈2022-2023学年高一数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,则A. B.C. D.2.函数y=sin(2x)的单调增区间是()A.,](k∈Z) B.,](k∈Z)C.,](k∈Z) D.,](k∈Z)3.若函数为上的奇函数,则实数的值为()A. B.C.1 D.24.函数的图像向左平移个单位长度后是奇函数,则在上的最小值是()A. B.C. D.5.已知,且,对任意的实数,函数不可能A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数6.为了得到函数的图象,只需把函数的图象()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度7.设函数,若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值是()A.4π B.2πC.π D.8.已知扇形的周长为8,圆心角为2弧度,则该扇形的面积为A B.C. D.9.已知,则的大小关系为A. B.C. D.10.已知,,c=40.1,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点(2,),则___________12.写出一个同时具有下列三个性质函数:________.①;②在上单调递增;③.13.已知,,则ab=_____________.14.计算___________.15.如图所示,弧田是由圆弧和其所对弦围成的图形,若弧田的弧长为,弧所在的圆的半径为4,则弧田的面积是___________.16.已知函数,则下列说法正确的有________.①的图象可由的图象向右平移个单位长度得到②在上单调递增③在内有2个零点④在上的最大值为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.给出以下四个式子:①;②;③;④.(1)已知所给各式都等于同一个常数,试从上述四个式子中任选一个,求出这个常数;(2)分析以上各式的共同特点,写出能反应一般规律的等式,并对等式正确性作出证明.18.已知函数(1)求函数的最小正周期;(2)求函数在上的值域19.已知函数f(x)=(a,b为常数,且a≠0)满足f(2)=1,方程f(x)=x有唯一解,(1)求函数f(x)的解析式;(2)若,求函数的最大值.20.已知函数f(x)=lg(3+x)+lg(3-x)(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由21.已知函数f(x)=sinxcosx−cos2x+m的最大值为1.(1)求m的值;(2)求当x[0,]时f(x)的取值范围;(3)求使得f(x)≥成立的x的取值集合.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】因为,故选A.2、D【解析】先将自变量的系数变为正数,再由三角函数的单调性得出自变量所满足的不等式,求解即可得出所要的单调递增区间【详解】y=sin(2x)=﹣sin(2x)令,k∈Z解得,k∈Z函数的递增区间是,](k∈Z)故选D【点睛】本题考查正弦函数的单调性,求解本题的关键有二,一是将自变量的系数为为正,二是根据正弦函数的单调性得出相位满足的取值范围,解题时不要忘记引入的参数的取值范围即k∈Z3、A【解析】根据奇函数的性质,当定义域中能取到零时,有,可求得答案.【详解】函数为上的奇函数,故,得,当时,满足,即此时为奇函数,故,故选:A4、D【解析】由函数图像平移后得到的是奇函数得,再利用三角函数的图像和性质求在上的最小值.【详解】平移后得到函数∵函数为奇函数,故∵,∴,∴函数为,∴,时,函数取得最小值为故选【点睛】本题主要考查三角函数图像的变换,考查三角函数的奇偶性和在区间上的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、C【解析】,当时,,为偶函数当时,,为奇函数当且时,既不奇函数又不是偶函数故选6、A【解析】根据三角函数图象的变换求解即可【详解】由题意,把函数的图象向左平行移动个单位长度得到故选:A7、C【解析】首先得出f(x1)是最小值,f(x2)是最大值,可得|x1﹣x2|的最小值为函数的半个周期,根据周期公式可得答案【详解】函数,∵对任意x∈R都有f(x1)≤f(x)≤f(x2),∴f(x1)是最小值,f(x2)是最大值;∴|x1﹣x2|的最小值为函数的半个周期,∵T=2π,∴|x1﹣x2|的最小值为π,故选:C.8、A【解析】利用弧长公式、扇形的面积计算公式即可得出【详解】设此扇形半径为r,扇形弧长为l=2r则2r+2r=8,r=2,∴扇形的面积为r=故选A【点睛】本题考查了弧长公式、扇形的面积计算公式,属于基础题9、D【解析】,且,,,故选D.10、A【解析】利用指对数函数的性质判断指对数式的大小.【详解】由,∴.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由幂函数所过的点求的解析式,进而求即可.【详解】由题设,若,则,可得,∴,故.故答案为:12、或其他【解析】找出一个同时具有三个性质的函数即可.【详解】例如,是单调递增函数,,满足三个条件.故答案为:.(答案不唯一)13、1【解析】将化成对数形式,再根据对数换底公式可求ab的值.【详解】,.故答案为:1.14、2【解析】利用指数、对数运算法则即可计算作答.【详解】.故答案:215、【解析】根据题意得,进而根据扇形面积公式计算即可得答案.【详解】解:根据题意,只需计算图中阴影部分的面积,设,因为弧田的弧长为,弧所在的圆的半径为4,所以,所以阴影部分的面积为所以弧田的面积是.故答案为:16、②③【解析】化简函数,结合三角函数的图象变换,可判定①不正确;根据正弦型函数的单调的方法,可判定②正确;令,求得,可判定③正确;由,得到,结合三角函数的性质,可判定④正确.【详解】由函数,对于①中,将函数的图象向右平移个单位长度,得到,所以①不正确;对于②中,令,解得,当时,可得,即函数在上单调递增,所以函数在上单调递增,所以②正确;对于③中,令,可得,解得,当时,可得;当时,可得,所以内有2个零点,所以③正确;对于④中,由,可得,当时,即时,函数取得最大值,最大值为,所以④不正确.故答案为:②③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】分析:(1)利用第二个式子,结合同角三角函数的平方关系,以及正弦的倍角公式,结合特殊角的三角函数值,求得结果;(2)根据题中所给的角之间的关系,归纳推理得到结果,证明过程应用相关公式证明即可.详解:(1).(2).证明如下:.点睛:该题考查是有关三角公式的问题,涉及到的知识点有同角三角函数的关系式,正弦的倍角公式,余弦的差角公式等,正确使用公式是解题的关键.18、(1);(2).【解析】(1)利用降幂公式、辅助角公式,结合正弦型函数最小正周期公式进行求解即可;(2)结合(1)的结论,利用正弦型函数的单调性进行求解即可.【小问1详解】,函数的最小正周期为;【小问2详解】由,则,则,即,所以函数在上的值域为.19、(1)f(x)=;(2).【解析】(1)由可得,由此方程的解唯一,可得,可求出,再由f(2)=1,可求出的值,进而可求出函数f(x)的解析式;(2)由题意可得,然后求出的最小值,可得的最大值【详解】解:(1)由,得,即.因为方程有唯一解,所以,即,因为f(2)=1,所以=1,所以,所以=;(2)因为,所以,而,当,即时,取得最小值,此时取得最大值.20、(1);(2)偶函数,理由详见解析【解析】(1)求定义域,通常就是求使函数式有意义的自变量取值集合,所以只要满足各项都有意义即可,对数型的函数求值域,关键求出真数部分的取值范围就可以了;(2)判断函数奇偶性,就是利用奇偶性定义判断即可试题解析:(1)由函数式可得又所以值域为(2)由(1)可知定义域关于原点对称所以原函数为偶函数考点:1.求复合函数的定义域、值域;2.用定义判断函数奇偶性21、(1)(2)(3)【解析】(1)将函数f(x)=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论