苏教版高中数学教案_第1页
苏教版高中数学教案_第2页
苏教版高中数学教案_第3页
苏教版高中数学教案_第4页
苏教版高中数学教案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页苏教版高中数学教案苏教版高中数学教案1

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种非常的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好预备。而等差数列是在同学学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

依据教学大纲的要求和同学的实际水平,确定了本次课的教学目标

a在知识上:理解并掌控等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在技能上:培育同学观测、分析、归纳、推理的技能;在领悟函数与数列关系的前提下,把讨论函数的方法迁移来讨论数列,培育同学的知识、方法迁移技能;通过阶梯性练习,提高同学分析问题和解决问题的技能。

c在情感上:通过对等差数列的讨论,培育同学主动探究、勇于发觉的求知精神;养成细心观测、仔细分析、擅长总结的良好思维习惯。

3、教学重点和难点

依据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于同学第一次接触不完全归纳法,对此并不熟识因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,同学对“数学建模”的思想方法较为生疏,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情分析对于三中的高一同学,知识阅历已较为丰富,他们的智力进展已到了形式运演阶段,具备了教强的抽象思维技能和演绎推理技能,所以我在授课时着重引导、启发、讨论和探讨以符合这类同学的心理进展特点,从而促进思维技能的进一步进展。

二、教法分析

针对高中生这一思维特点和心理特征,本节课我采纳启发式、争论式以及讲练结合的教学方法,通过问题激发同学求知欲,使同学主动参加数学实践活动,以独立思索和相互沟通的形式,在老师的指导下发觉、分析和解决问题。

三、学法指导在引导分析时,留出同学的思索空间,让同学去联想、探究,同时鼓舞同学大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)

通过练习1复习上节内容,为本节课用函数思想讨论数列问题作预备。

2.小明目前会100个单词,他她打算从今日起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92①

3.小芳只会5个单词,他决断从今日起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25②

通过练习2和3引出两个详细的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发同学的求知欲。由同学观测两个数列特点,引出等差数列的概念,对问题的总结又培育同学由详细到抽象、由非常到一般的认知技能。

(二)新课探究

1、由引入自然的给出等差数列的概念:

假如一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调:

①“从第二项起”满意条件;

②公差d肯定是由后项减前项所得;

③每一项与它的前一项的差需要是同一个常数(强调“同一个常数”);

在理解概念的基础上,由同学将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1-an=d(n≥1)

同时为了协作概念的理解,我找了5组数列,由同学判断是否为等差数列,是等差数列的找出公差。

1.9,8,7,6,5,4,……;√d=-1

2.0.70,0.71,0.72,0.73,0.74……;√d=0.01

3.0,0,0,0,0,0,…….;√d=0

4.1,2,3,2,3,4,……;×

5.1,0,1,0,1,……×

其中第一个数列公差0,第二个数列公差0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

苏教版高中数学教案2

教学目标

1.掌控对数函数的概念,图象和性质,且在掌控性质的基础上能进行初步的应用.

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2)能把握指数函数与对数函数的实质去讨论认识对数函数的性质,初步学会用对数函数的性质解决简约的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类争论等思想,着重培育同学的观测,分析,归纳等规律思维技能.

3.通过指数函数与对数函数在图象与性质上的对比,对同学进行对称美,简洁美等审美教育,调动同学学习数学的积极性.

教学建议

教材分析

(1)对数函数又是函数中一类重要的基本初等函数,它是在同学已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使同学的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是同学今后学习对数方程,对数不等式的基础.

(2)本节的教学重点是理解对数函数的定义,掌控对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,同学不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

(3)本节课的主线是对数函数是指数函数的反函数,全部的问题都应围围着这条主线开展.而通过互为反函数的两个函数的关系由已知函数讨论未知函数的性质,这种方法是第一次运用,同学不适应,把握不住关键,所以应是本节课的难点.

教法建议

(1)对数函数在引入时,就应从同学熟识的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类争论而且对每一类问题也可以多项选择几个不同的底,画在同一个坐标系内,便于观测图象的特征,找出共性,归纳性质.

(2)在本节课中结合对数函数教学的特点,肯定要让同学动手做,动脑想,大胆猜,要以同学的讨论为主,老师只是不断地反函数这条主线引导同学思索的方向.这样既加强了同学的参加意识又教给他们思索问题的方法,猎取知识的途径,使同学学有所思,思有所得,练有所获,,从而提高学习爱好.

苏教版高中数学教案3

教学目标

1.使同学掌控指数函数的概念,图象和性质.

(1)能依据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如

的图象.

2.通过对指数函数的概念图象性质的学习,培育同学观测,分析归纳的技能,进一步体会数形结合的思想方法.

3.通过对指数函数的讨论,让同学认识到数学的应用价值,激发同学学习数学的爱好.使同学擅长从现实生活中数学的发觉问题,解决问题.

教学建议

教材分析

(1)指数函数是在同学系统学习了函数概念,基本掌控了函数的性质的基础上进行讨论的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点讨论.

(2)本节的教学重点是在理解指数函数定义的基础上掌控指数函数的图象和性质.难点是对底数

时,函数值改变状况的区分.

(3)指数函数是同学完全生疏的一类函数,对于这样的函数应怎样进行较为系统的理论讨论是同学面临的重要问题,所以从指数函数的讨论过程中得到相应的结论当然重要,但更为重要的是要了解系统讨论一类函数的方法,所以在教学中要特别让同学去体会讨论的方法,以便能将其迁移到其他函数的讨论.

教法建议

(1)关于指数函数的定义根据课本上说法它是一种形式定义即解析式的特征需要是

的样子,不能有一点差异,诸如

,

等都不是指数函数.

(2)对底数

的限制条件的理解与认识也是认识指数函数的重要内容.假如有可能尽量让同学自己去讨论对底数,指数都有什么限制要求,老师再予以补充或用详细例子加以说明,由于对这个条件的认识不仅关系到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论