版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.下列各式中,正确是()A. B.C. D.2.若一个扇形的半径为2,圆心角为,则该扇形的弧长等于()A. B.C. D.3.已知的三个顶点、、及平面内一点满足,则点与的关系是()A.在的内部 B.在的外部C.是边上的一个三等分点 D.是边上的一个三等分点4.函数的零点所在的大致区间是()A. B.C. D.5.已知是自然对数的底数,函数的零点为,函数的零点为,则下列不等式中成立的是A. B.C. D.6.已知角的顶点与原点重合,它的始边与轴的非负半轴重合,它的终边上一点坐标为,.则为()A. B.C. D.7.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天晚上点钟喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小时的速度减少,则他次日上午最早()点(结果取整数)开车才不构成酒驾.(参考数据:,)A. B.C. D.8.已知集合,,则等于()A. B.C. D.9.已知命题,则是()A., B.,C., D.,10.若,则的值为A. B.C. D.11.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值12.下列命题是全称量词命题,且是真命题的为()A.有些四边形的内角和不等于360° B.,C., D.所有能被4整除的数都是偶数二、填空题(本大题共4小题,共20分)13.若,则的最大值为________14.一条光线从A处射到点B(0,1)后被轴反射,则反射光线所在直线的一般式方程为_____________.15.将函数y=sin2x+π4的图象上各点的纵坐标不变,横坐标伸长到原来的16.已知,且,则______三、解答题(本大题共6小题,共70分)17.已知函数且.(1)若函数的图象过点,求的值;(2)当时,若不等式对任意恒成立,求实数的取值范围18.已知,且,求的值.19.在充分竞争的市场环境中,产品的定价至关重要,它将影响产品的销量,进而影响生产成本、品牌形象等某公司根据多年的市场经验,总结得到了其生产的产品A在一个销售季度的销量单位:万件与售价单位:元之间满足函数关系,A的单件成本单位:元与销量y之间满足函数关系当产品A的售价在什么范围内时,能使得其销量不低于5万件?当产品A的售价为多少时,总利润最大?注:总利润销量售价单件成本20.设函数.(1)求函数在上的最小值;(2)若方程在上有四个不相等实根,求的范围.21.已知(1)化简(2)若是第三象限角,且,求的值22.若集合,,.(1)求;(2)若,求实数的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】利用指数函数的单调性可判断AB选项的正误,利用对数函数的单调性可判断CD选项的正误.【详解】对于A选项,因为函数在上为增函数,则,A错;对于B选项,因为函数在上为减函数,则,B错;对于C选项,因为函数为上的增函数,则,C对;对于D选项,因为函数为上的减函数,则,D错.故选:C.2、B【解析】求圆心角的弧度数,再由弧长公式求弧长.【详解】∵圆心角为,∴圆心角的弧度数为,又扇形的半径为2,∴该扇形的弧长,故选:B.3、D【解析】利用向量的运算法则将等式变形,得到,据三点共线的充要条件得出结论【详解】解:,,∴是边上的一个三等分点故选:D【点睛】本题考查向量的运算法则及三点共线的充要条件,属于基础题4、C【解析】由题意,函数在上连续且单调递增,计算,,根据零点存在性定理判断即可【详解】解:函数在上连续且单调递增,且,,所以所以的零点所在的大致区间是故选:5、A【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函数y=ex,y=lnx,y=2﹣x的图象如图:∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选A考点:函数的零点6、D【解析】根据正弦函数的定义可得选项.【详解】的终边上有一点,,.故选:D.7、D【解析】根据题意可得不等式,解不等式可求得,由此可得结论.【详解】假设经过小时后,驾驶员开车才不构成酒驾,则,即,,则,,次日上午最早点,该驾驶员开车才不构成酒驾.故选:D.8、A【解析】先解不等式,再由交集的定义求解即可【详解】由题,因为,所以,即,所以,故选:A【点睛】本题考查集合的交集运算,考查利用指数函数单调性解不等式9、C【解析】由全称命题的否定是特称命题即可得结果.【详解】由全称命题的否定是特称命题知:,,是,,故选:C.10、B【解析】根据诱导公式将原式化简为,分子分母同除以,即可求出结果.【详解】因为,又,所以原式.故选B【点睛】本题主要考查诱导公式和同角三角函数基本关系,熟记公式即可,属于基础题型.11、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B12、D【解析】根据定义分析判断即可.【详解】A和C都是存在量词命题,B是全称量词命题,但其是假命题,如时,,D选项为全称命题且为真命题故选:D.二、填空题(本大题共4小题,共20分)13、【解析】化简,根据题意结合基本不等式,取得,即可求解.【详解】由题意,实数,且,又由,当且仅当时,即时,等号成立,所以,即的最大值为.故答案为:.14、【解析】根据反射光线的性质,确定反射光线上的两个点的坐标,最后确定直线的一般式方程.【详解】因为一条光线从A处射到点B(0,1)后被轴反射,所以点A关于直线对称点为,根据对称性可知,反射光线所在直线过点,又因为反射光线所在直线又过点,所以反射光线所在直线斜率为,所以反射光线所在直线方程为,化成一般式得:,故答案为:.15、f【解析】利用三角函数图象的平移和伸缩变换即可得正确答案.【详解】函数y=sin2x+π得到y=sin再向右平移π4个单位,得到y=故最终所得到的函数解析式为:fx故答案为:fx16、##【解析】由,应用诱导公式,结合已知角的范围及正弦值求,即可得解.【详解】由题设,,又,即,且,所以,故.故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2)﹒【解析】(1)将点代入解析式,即可求出的值;(2)换元法,令,然后利用函数思想求出新函数的最小值即可【小问1详解】由已知得,∴,解得,结合,且,∴;【小问2详解】由已知得,当,时恒成立,令,,且,,,∵在,上单调递增,故,∵是单调递增函数,故,故即为所求,即的范围为18、【解析】先利用已知求得和的值,然后利用根据两角和的公式展开,即可得到的值解析:.19、(1)(2)14元【解析】(1)根据题中所给的解析式,分情况列出其满足的不等式组,求得结果;(2)根据题意,列出利润对应的解析式,分段求最值,最后比较求得结果.【详解】(1)由得,或解得,或.即.答:当产品A的售价时,其销量y不低于5万件(2)由题意,总利润①当时,,当且仅当时等号成立.②当时,单调递减,所以,时,利润最大.答:当产品A的售价为14元时,总利润最大【点睛】该题考查的是有关函数的应用问题,涉及到的知识点有根据题意列出函数解析式,根据函数解析式求函数的最值,注意认真分析题意,最后求得结果.20、(1)见解析;(2)【解析】(1)将函数化简为,令,则,求出对称轴,对区间与对称轴的位置关系进行分类讨论求出最小值;(2)要满足方程在上有四个不相等的实根,需满足在上有两个不等实根,列出相应的不等式组,求解即可.【详解】(1),令,则,对称轴为:当即时,,当即时,,当时,,所以求函数在上的最小值;(2)要满足方程在上有四个不相等的实根,需满足在上有两个不等零点,,解得.【点睛】本题考查动轴定区间分类讨论二次函数最小值,正弦函数的单调性,二次函数的几何性质,属于中档题.21、(1);(2).【解析】分析:(1)根据诱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- HY/T 0415-2024海底底质资料整编技术规范
- 宜宾学院《数据库理论与实践》2021-2022学年第一学期期末试卷
- 许昌学院《发展心理学》2021-2022学年第一学期期末试卷
- 徐州工程学院《面向对象分析与设计》2022-2023学年第一学期期末试卷
- 运动与健康促进工作计划
- 社区特殊人群关怀的个人项目计划
- 信阳师范大学《幼儿舞蹈创编》2022-2023学年第一学期期末试卷
- 绿色发展的品牌创新探索计划
- 公关活动策划计划
- 信阳师范大学《计算机网络原理》2022-2023学年第一学期期末试卷
- 2025年1月“八省联考”考前猜想卷英语试题01 含解析
- 国企招聘台州玉环市部分国有企业招聘考试真题2023
- 企业行政总监个人简历范文
- 冬季物业安全管理培训
- 鲁迅先生的生平及其背景
- 2025年1月“八省联考”考前猜想卷(含答案解析)
- 11《百年孤独(节选)》课件高中语文选择性必修上册
- 手术室手术衣
- 砂石料加工场成本控制专项方案
- GB/T 26342-2024国际间遗体转运棺柩
- 2020-2024年上海市春考语文真题试卷汇编含答案
评论
0/150
提交评论