江苏省泰州市泰州栋梁学校2022-2023学年高一数学第一学期期末学业质量监测模拟试题含解析_第1页
江苏省泰州市泰州栋梁学校2022-2023学年高一数学第一学期期末学业质量监测模拟试题含解析_第2页
江苏省泰州市泰州栋梁学校2022-2023学年高一数学第一学期期末学业质量监测模拟试题含解析_第3页
江苏省泰州市泰州栋梁学校2022-2023学年高一数学第一学期期末学业质量监测模拟试题含解析_第4页
江苏省泰州市泰州栋梁学校2022-2023学年高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.设集合,若,则a的取值范围是()A. B.C. D.2.若直线l1:2x+y-1=0与l2:y=kx-1平行,则l1,l2之间的距离等于()A. B.C. D.3.某校高一年级有180名男生,150名女生,学校想了解高一学生对文史类课程的看法,用分层抽样的方式,从高一年级学生中抽取若干人进行访谈.已知在女生中抽取了30人,则在男生中抽取了()A.18人 B.36人C.45人 D.60人4.函数的最小值和最小正周期为()A.1和2π B.0和2πC.1和π D.0和π5.已知幂函数在上单调递减,则()A. B.5C. D.16.函数的大致图像是()A. B.C. D.7.若,则a,b,c的大小关系是()A. B.C. D.8.在下列命题中,不是公理的是A.平行于同一条直线的两条直线互相平行B.如果一条直线上的两点在一个平面内,那么这条直线在此平面内C.空间中,如果两个角的两边分别对应平行,那么这两角相等或互补D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线9.若函数的定义域是,则函数值域为()A. B.C. D.10.若,则()A. B.C. D.11.定义域为的函数满足,当时,,若时,对任意的都有成立,则实数的取值范围是()A. B.C. D.12.下列函数图象中,不能用二分法求零点的是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.若集合,则满足的集合的个数是___________.14.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.15.已知函数=,若对任意的都有成立,则实数的取值范围是______16.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.三、解答题(本大题共6小题,共70分)17.如图,三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,D为AC中点(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A118.如图,在四棱锥中,平面,,为棱上一点.(1)设为与的交点,若,求证:平面;(2)若,求证:19.黔东南州某银行柜台异地跨行转账手续费的收费标准为;转账不超过200元,每笔收1元:转账不超过10000元,每笔收转账金额的0.5%:转账超过10000元时每笔收50元,张黔需要在该银行柜台进行一笔异地跨行转账的业务.(1)若张黔转账的金额为x元,手续费为y元,请将y表示为x的函数:(2)若张黔转账的金额为10t-3996元,他支付的于练费大于5元且小了50元,求t的取值范围.20.计算:(1)94(2)lg5+lg2⋅21.已知扇形AOB的圆心角α为,半径长R为6,求:(1)弧AB的长;(2)扇形的面积22.记不等式的解集为A,不等式的解集为B.(1)当时,求;(2)若,求实数a的取值范围.

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据,由集合A,B有公共元素求解.【详解】集合,因为,所以集合A,B有公共元素,所以故选:D2、B【解析】根据两直线平行求得k的值,再求两直线之间的距离【详解】直线l2的方程可化为kx-y-1=0,由两直线平行得,k=-2;∴l2的方程为2x+y+1=0,∴l1,l2之间的距离为故选B【点睛】本题考查了直线平行以及平行线之间的距离应用问题,是基础题3、B【解析】先计算出抽样比,即可计算出男生中抽取了多少人.【详解】解:女生一共有150名女生抽取了30人,故抽样比为:,抽取的男生人数为:.故选:B.4、D【解析】由正弦函数的性质即可求得的最小值和最小正周期【详解】解:∵,∴当=﹣1时,f(x)取得最小值,即f(x)min;又其最小正周期Tπ,∴f(x)的最小值和最小正周期分别是:,π故选D【点睛】本题考查正弦函数的周期性与最值,熟练掌握正弦函数的图象与性质是解题关键,属于中档题5、C【解析】根据幂函数的定义,求得或,再结合幂函数的性质,即可求解.【详解】解:依题意,,故或;而在上单调递减,在上单调递增,故,故选:C.6、D【解析】由题可得定义域为,排除A,C;又由在上单增,所以选D.7、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.8、C【解析】A,B,D分别为公理4,公理1,公理2,C为角平行性质,选C9、A【解析】根据的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知在上递增,,即.故选:A10、A【解析】应用辅助角公式将条件化为,再应用诱导公式求.【详解】由题设,,则,又.故选:A11、B【解析】由可求解出和时,的解析式,从而得到在上的最小值,从而将不等式转化为对恒成立,利用分离变量法可将问题转化为,利用二次函数单调性求得在上的最大值,从而得到,进而求得结果.【详解】当时,时,当时,,时,时,,即对恒成立即:对恒成立令,,,解得:故选:B12、B【解析】利用二分法求函数零点所满足条件可得出合适的选项.【详解】观察图象与轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B不能用二分法求零点故选:B.二、填空题(本大题共4小题,共20分)13、4【解析】求出集合,由即可求出集合的个数【详解】因为集合,,因为,故有元素0,3,且可能有元素1或2,所以或或或故满足的集合的个数为,故答案为:14、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题15、【解析】转化为对任意的都有,再分类讨论求出最值,代入解不等式即可得解.【详解】因为=,所以等价于,等价于,所以对任意的都有成立,等价于,(1)当,即时,在上为减函数,,在上为减函数,,所以,解得,结合可得.(2)当,即时,在上为减函数,,在上为减函数,在上为增函数,或,所以且,解得.(3)当,即时,,在上为减函数,,在上为增函数,,所以,解得,结合可知,不合题意.(4)当,即时,在上为减函数,在上为增函数,,在上为增函数,,此时不成立.(5)当时,在上为增函数,,在上为增函数,,所以,解得,结合可知,不合题意.综上所述:.故答案为:16、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想三、解答题(本大题共6小题,共70分)17、(1)见解析;(2)见解析.【解析】(1)连接交于点,连接,可得为中位线,,结合线面平行的判定定理,得平面;(2)由底面,得,正三角形中,中线,结合线面垂直的判定定理,得平面,最后由面面垂直的判定定理,证出平面平面.【详解】(1)连接交于点,连接,则点为的中点为中点,得为中位线,,平面平面,∴直线平面;(2)证明:底面,,∵底面正三角形,是中点,平面,平面,∴平面平面【点睛】本题考查了直三棱柱的性质,线面平行的判定定理、面面垂直的判定定理,,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.18、(1)见解析;(2)见解析.【解析】(1)只需证得,即可证得平面;(2)因为平面,平面,所以,即可证得平面,从而得证.试题解析:(1)在与中,因为,所以,又因为,所以在中,有,则.又因为平面,平面,所以平面.(2)因为平面,平面,所以.又因为,平面,平面,,所以平面,平面,所以19、(1)(2)【解析】(1)根据已知条件,写成分段函数,即可求解;(2)根据已知条件,结合指数函数的性质,即可求解【小问1详解】解:当时,,当时,,当时,,故;【小问2详解】解:从(1)中的分段函数得,如果张黔支付的手续费大于5元且小于50元,则转账金额大于1000元,且小于10000元,则只需要考虑当时的情况即可,由,所以,得,得,即实数t的取值范围是20、(1)12【解析】(1)根据指数幂的运算法则逐一进行化简;(2)根据对数幂的运算法则进行化简;【详解】解:(1)原式=3(2)原式=lg【点睛】指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号;底数是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论