




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,若关于的不等式恰有一个整数解,则实数的最小值是A. B.C. D.2.下列关于函数,的单调性叙述正确的是()A.在上单调递增,在上单调递减B.在上单调递增,在上单调递减C.在及上单调递增,在上单调递减D.在上单调递增,在及上单调递减3.下列不等式成立的是()A.log31C.log23<4.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.5.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x46.当x越来越大时,下列函数中增长速度最快的是()A. B.C. D.7.下列函数中既是奇函数,又是其定义域上的增函数的是A. B.C. D.8.若函数的定义域是,则函数的定义域是()A. B.C. D.9.方程的解所在的区间为()A. B.C. D.10.已知角的终边过点,且,则的值为()A. B.C. D.11.下列函数中,既是奇函数,又是增函数的是()①;②;③;④A.①② B.①④C.②③ D.③④12.已知角的终边经过点,且,则的值为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.在正方体中,直线与平面所成角的正弦值为________14.袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2球,则2球颜色相同的概率等于________15.函数fx=16.已知,则__________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在30天内日销售量(克)与时间(天)之间的函数关系如下表所示:第天5152030销售量克35252010(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.(注:日销售金额=每克的销售价格×日销售量)18.在平面直角坐标系中,角()和角()的顶点均与坐标原点重合,始边均为轴的非负半轴,终边分别与单位圆交于两点,两点的纵坐标分别为,.(1)求,的值;(2)求的值.19.已知函数是偶函数.(1)求实数的值;(2)若函数,函数只有一个零点,求实数的取值范围.20.已知,求值;已知,求的值21.已知圆,直线.(1)若直线与圆交于不同的两点,当时,求的值.(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.22.已知若,求方程的解;若关于x的方程在区间上有两个不相等的实根、:求实数k的取值范围;证明:
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】将看作整体,先求的取值范围,再根据不等式恰有一个整点和函数的图像,推断参数,的取值范围【详解】做出函数的图像如图实线部分所示,由,得,若,则满足不等式,不等式至少有两个整数解,不满足题意,故,所以,且整数解只能是4,当时,,所以,选择A【点睛】本题考查了分段函数的性质,一元二次不等式的解法,及整体代换思想,数形结合思想的应用,需要根据题设条件,将数学语言转化为图形表达,再转化为参数的取值范围2、C【解析】先求出函数的一般性单调区间,再结合选项判断即可.【详解】的单调增区间满足:,即,所以其单调增区间为:,同理可得其单调减区间为:.由于,令中的,有,,所以在上的增区间为及.令中的,有,所以在上的减区间为.故选:C3、A【解析】由对数的单调性直接比较大小.【详解】因为log31=log2=log24<故选:A.4、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误5、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.6、B【解析】根据函数的特点即可判断出增长速度.【详解】因为指数函数是几何级数增长,当x越来越大时,增长速度最快.故选:B7、C【解析】对于A,函数的偶函数,不符合,故错;对于B,定义域为,是非奇非偶函数,故错;对于C,定义域R,是奇函数,且是增函数,正确;对于D,是奇函数,但是是减函数,故错考点:本题考查函数的奇偶性和单调性点评:解决本题的关键是掌握初等函数的奇偶性和单调性8、C【解析】由题可列出,可求出【详解】的定义域是,在中,,解得,故的定义域为.故选:C.9、C【解析】将方程转化为函数的零点问题,根据函数单调性判断零点所处区间即可.【详解】函数在上单增,由,知,函数的根处在里,故选:C10、B【解析】因为角的终边过点,所以,,解得,故选B.11、D【解析】对每个函【解析】判断奇偶性及单调性即可.【详解】对于①,,奇函数,在和上分别单增,不满足条件;对于②,,偶函数,不满足条件;对于③,,奇函数,在R上单增,符合题意;对于④,,奇函数,在R上单增,符合题意;故选:D12、B【解析】根据点,先表示出该点和原点之间的距离,再根据三角函数的定义列出等式,解方程可得答案.【详解】因为角的终边经过点,则,因为,所以,且,解得,故选:B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】连接AC交BD于O点,设交面于点E,连接OE,则角CEO就是所求的线面角,因为AC垂直于BD,AC垂直于,故AC垂直于面.设正方体的边长为2,则OC=,OE=1,CE,此时正弦值为故答案为.点睛:求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;高二时还会学到空间向量法,可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是要么定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,要么建系来做.14、【解析】把4个球编号,用列举法写出所有基本事件,并得出2球颜色相同的事件,计数后可计算概率【详解】2个红球编号为,2个白球编号为,则依次取2球的基本事件有:共6个,其中2球颜色相同的事件有共2个,所求概率为故答案为:15、(0.+∞)【解析】函数定义域为R,∵3x>0∴3考点:函数单调性与值域16、##【解析】首先根据同角三角函数的基本关系求出,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;【详解】解:因为,所以,所以故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2);(3)25.【解析】(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案【详解】(1)由图可知,,,,设所在直线方程为,把代入得,所以.,由两点式得所在的直线方程为,整理得,,,所以,(2)由题意,设,把两点,代入得,解得所以把点,代入也适合,即对应的四点都在同一条直线上,所以.(本题若把四点中的任意两点代入中求出,,再验证也可以)(3)设日销售金额为,依题意得,当时,配方整理得,当时,在区间上的最大值为900当时,,配方整理得,所以当时,在区间上的最大值为1125.综上可知日销售金额最大值为1125元,此时.【点睛】本小题主要考查具体的函数模型在实际问题中的应用,考查数形结合、化归转化的数学思想方法,以及应用意识和运算求解能力18、(1),(2)【解析】(1)先利用任意角的三角函数的定义求出,再利用同角三角函数的关系可求得答案,(2)先利用诱导公式化简,再代值计算即可【小问1详解】因为在平面直角坐标系中,角,的顶点均与坐标原点重合,终边分别与单位圆交于两点,且两点的纵坐标分别为,,又因为,,根据三角函数的定义得:,,所以,,所以,.【小问2详解】19、(1);(2).【解析】(1)利用函数为偶函数推出的值,即可求解;(2)根据函数与方程之间的关系,转化为方程只有一个根,利用换元法进行转化求解即可.【详解】(1)由题意,函数为偶函数,所以,即,所以,即,则对恒成立,解得.(2)由只有一个零点,所以方程有且只有一个实根,即方程有且只有一个实根,即方程有且只有一个实根,令,则方程有且只有一个正根,①当时,,不合题意;②当时,因为0不是方程的根,所以方程的两根异号或有两相等正根,由,解得或,当,则不合题意,舍去;当,则,符合题意,若方程有两根异号,则,所以,综上,的取值范围是.20、(1)(2)【解析】(1)由三角函数中平方关系求得,再由诱导公式可商数关系化简求值;(2)考虑到已知角与待求角互余,可直接利用诱导公式求值【详解】解:已知,所以:,所以:,,,由于,所以:【点睛】本题考查同角间的三角函数关系与诱导公式,解题时需考虑已知角与未知角之间的关系,以寻求运用恰当的公式进行化简变形与求值21、(1);(2)直线过定点;(3)【解析】(1)利用点到直线的距离公式,结合点到的距离,可求的值;(2)由题意可知:、、、四点共圆且在以为直径的圆上,、在圆上可得直线,的方程,即可求得直线是否过定点;(3)设圆心到直线、的距离分别为,.则,表示出四边形的面积,利用基本不等式,可求四边形的面积最大值【详解】解:(1),点到的距离,(2)由题意可知:、、、四点共圆且在以为直径的圆上,设,其方程为:,即,又、在圆上,即由,得,直线过定点)(3)设圆心到直线、的距离分别为,则,当且仅当即时,取“”四边形的面积的最大值为22、(1)(2),见解析【解析】当时,分类讨论,去掉绝对值,直接进行求解,即可得到答案讨论两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025企业与员工借款协议合同
- 资源价格保护方案(3篇)
- 股权兑现方案(3篇)
- 生态循环农业技术在2025年的经济效益与农业现代化报告
- 游戏化营销助力美妆品牌2025年品牌形象塑造报告
- 设备改造电控升级方案(3篇)
- 商铺业主监督方案(3篇)
- 车间安全工作奖励方案(3篇)
- 海堤达标工程方案(3篇)
- 家具营销任务分解方案(3篇)
- 2025机关事业单位工人招聘《机动车驾驶员》技师 考试题库与参考答案
- 《汽车制造物流管理教程》课件
- 企业战略咨询服务简单合同
- 矿区第三方管理制度内容
- 中国心力衰竭诊断和治疗指南
- GB/T 19701.2-2024外科植入物超高分子量聚乙烯第2部分:模塑料
- 道路及市政管网改造工程现场组织管理机构及施工准备方案
- 廉洁自律专题培训
- 高压氧治疗糖尿病
- 装配式围挡施工方案
- 四川达州历年中考语文现代文阅读真题42篇(含答案)(2003-2023)
评论
0/150
提交评论