二次函数与一元二次方程课件_第1页
二次函数与一元二次方程课件_第2页
二次函数与一元二次方程课件_第3页
二次函数与一元二次方程课件_第4页
二次函数与一元二次方程课件_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数与一元二次方程二次函数与一元二次方程二次函数与一元二次方程学习目标1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点)2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点)3.了解用图象法求一元二次方程的近似根.二次函数与一元二次方程二次函数与一元二次方程二次函数与一元二1学习目标1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点)2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点)3.了解用图象法求一元二次方程的近似根.学习目标1.通过探索,理解二次函数与一元二次方程(不等式)之2导入新课情境引入问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:

h=20t-5t2,考虑以下问题:导入新课情境引入问题如图,以40m/s的速度将小球沿与地面3讲授新课二次函数与一元二次方程的关系一(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?Oht1513∴当球飞行1s或3s时,它的高度为15m.解:解方程15=20t-5t2,

t2-4t+3=0,

t1=1,t2=3.你能结合上图,指出为什么在两个时间求的高度为15m吗?h=20t-5t2讲授新课二次函数与一元二次方程的关系一(1)球的飞行高度能否4(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?你能结合图形指出为什么只在一个时间球的高度为20m?Oht202解方程:20=20t-5t2,t2-4t+4=0,t1=t2=2.当球飞行2秒时,它的高度为20米.h=20t-5t2(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?5(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.h=20t-5t2(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时6(4)球从飞出到落地要用多少时间?Oht0=20t-5t2,t2-4t=0,t1=0,t2=4.当球飞行0秒和4秒时,它的高度为0米.即0秒时球地面飞出,4秒时球落回地面.h=20t-5t2(4)球从飞出到落地要用多少时间?Oht0=20t-5t2,7(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.h=20t-5t2(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时8

从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?

一般地,当y取定值且a≠0时,二次函数为一元二次方程.如:y=5时,则5=ax2+bx+c就是一个一元二次方程.为一个常数(定值)从上面发现,二次函数y=ax2+bx+c何时为一元二9所以二次函数与一元二次方程关系密切.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.所以二次函数与一元二次方程关系密切.例如,已知二次函数y=10利用二次函数深入讨论一元二次方程二思考观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.利用二次函数深入讨论一元二次方程二思考111xyOy=x2-6x+9y=x2-x+1y=x2+x-2观察图象,完成下表:抛物线与x轴公共点个数公共点横坐标相应的一元二次方程的根y=x2-x+1y=x2-6x+9y=x2+x-20个1个2个x2-x+1=0无解0x2-6x+9=0,x1=x2=3-2,1x2+x-2=0,x1=-2,x2=11xyOy=x2-6x+9y=x2-x+1y=x12知识要点二次函数y=ax2+bx+c的图象与x轴交点一元二次方程ax2+bx+c=0的根b2-4ac有两个交点有两个不相等的实数根b2-4ac>0有两个重合的交点有两个相等的实数根b2-4ac

=0没有交点没有实数根b2-4ac<0二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系知识要点二次函数y=ax2+bx+c的图象与x轴交点一元二次13例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.(1)证明:∵m≠0,∴Δ=(m+2)2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,∴此抛物线与x轴总有两个交点;例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠14(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.h=20t-5t2(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时15(2)解:令y=0,则(x-1)(mx-2)=0,所以x-1=0或mx-2=0,解得x1=1,x2=.当m为正整数1或2时,x2为整数,即抛物线与x轴总有两个交点,且它们的横坐标都是整数.所以正整数m的值为1或2.例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.(2)解:令y=0,则(x-1)(mx-2)=0,例1:已知16变式:已知:抛物线y=x2+ax+a-2.(1)求证:不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)设这个二次函数的图象与x轴相交于A(x1,0),B(x2,0),且x1、x2的平方和为3,求a的值.(1)证明:∵Δ=a2-4(a-2)=(a-2)2+4>0,∴不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)解:∵x1+x2=-a,x1·x2=a-2,∴x1(2)+x2(2)=(x1+x2)2-2x1·x2=a2-2a+4=3,∴a=1.变式:已知:抛物线y=x2+ax+a-2.(1)证明:∵Δ=17例2如图,丁丁在扔铅球时,铅球沿抛物线

运行,其中x是铅球离初始位置的水平距离,y是铅球离地面的高度.(1)当铅球离地面的高度为2.1m时,它离初始位置的水平距离是多少?(2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少?(3)铅球离地面的高度能否达到3m?为什么?例2如图,丁丁在扔铅球时,铅球沿抛物线18解

(1)由抛物线的表达式得即解得即当铅球离地面的高度为2.1m时,它离初始位置的水平距离是1m或5m.(1)当铅球离地面的高度为2.1m时,它离初始位置的水平距离是多少?解(1)由抛物线的表达式得(1)当铅球离地面的高度为2.19(2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少?(2)由抛物线的表达式得

即解得即当铅球离地面的高度为2.5m时,它离初始位置的水平距离是3m.(2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距20(3)由抛物线的表达式得即因为所以方程无实根.所以铅球离地面的高度不能达到3m.(3)铅球离地面的高度能否达到3m?为什么?(3)由抛物线的表达式得(3)铅球离地面的高度能否达到3m?21一元二次方程与二次函数紧密地联系起来了.

一元二次方程与二次函数紧密地联系起来了.22例3:求一元二次方程的根的近似值(精确到0.1).分析:一元二次方程x²-2x-1=0的根就是抛物线y=x²-2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.利用二次函数求一元二次方程的近似解三例3:求一元二次方程23解:画出函数y=x²-2x-1的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.解:画出函数y=x²-2x-1的图象(如下图),由图象可24

先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:x…-0.4-0.5…y…-0.040.25…观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4.先求位于-1到0之间的根,由图象可估计这个根是25一元二次方程的图象解法利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数y=2x2+x-15的图象;(2)观察估计二次函数

y=2x2+x-15的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.方法归纳一元二次方程的图象解法利用二次函数的图象求一元二次方程2x226例4:已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的近似根为(

)A.x1≈-2.1,x2≈0.1B.x1≈-2.5,x2≈0.5C.x1≈-2.9,x2≈0.9D.x1≈-3,x2≈1解析:由图象可得二次函数y=ax2+bx+c图象的对称轴为x=-1,而对称轴右侧图象与x轴交点到原点的距离约为0.5,∴x2≈0.5;又∵对称轴为x=-1,则

=-1,∴x1=2×(-1)-0.5=-2.5.故x1≈-2.5,x2≈0.5.故选B.B例4:已知二次函数y=ax2+bx+c的图象如图所示,则一元27

解答本题首先需要根据图象估计出一个根,再根据对称性计算出另一个根,估计值的精确程度,直接关系到计算的准确性,故估计尽量要准确.方法总结解答本题首先需要根据图象估计出一个根,再根据对称性28二次函数与一元二次不等式的关系(拓展)四问题1函数y=ax2+bx+c的图象如图,那么方程ax2+bx+c=0的根是_____

_____;不等式ax2+bx+c>0的解集是___________;不等式ax2+bx+c<0的解集是_________.

3-1Oxyx1=-1,x2=3x<-1或x>3-1<x<3合作探究二次函数与一元二次不等式的关系(拓展)四问题1函数y=29拓广探索:函数y=ax2+bx+c的图象如图,那么方程ax2+bx+c=2的根是______________;不等式ax2+bx+c>2的解集是___________;不等式ax2+bx+c<2的解集是_________.

3-1Ox2(4,2)(-2,2)x1=-2,x2=4x<-2或x>4-2<x<4y拓广探索:函数y=ax2+bx+c的图象如图,那么3-1Ox30问题2:如果不等式ax2+bx+c>0(a≠0)的解集是x≠2的一切实数,那么函数y=ax2+bx+c的图象与x轴有____个交点,坐标是______.方程ax2+bx+c=0的根是______.1(2,0)x=22Ox问题2:如果不等式ax2+bx+c>0(a≠0)的解集是x≠31问题3:如果方程ax2+bx+c=0(a≠0)没有实数根,那么函数y=ax2+bx+c的图象与x轴有______个交点;不等式ax2+bx+c<0的解集是多少?0解:(1)当a>0时,ax2+bx+c<0无解;(2)当a<0时,ax2+bx+c<0的解集是一切实数.3-1Ox问题3:如果方程ax2+bx+c=0(a≠0)没有实数根,32试一试:利用函数图象解下列方程和不等式:(1)①-x2+x+2=0;②-x2+x+2>0;③-x2+x+2<0.(2)①x2-4x+4=0;②x2-4x+4>0;③x2-4x+4<0.(3)①-x2+x-2=0;②-x2+x-2>0;③-x2+x-2<0.xy020xy-12xy0y=-x2+x+2x1=-1,x2=21<x<2x1<-1,x2>2x2-4x+4=0

x=2

x≠2的一切实数

x无解-x2+x-2=0

x无解

x无解

x为全体实数试一试:利用函数图象解下列方程和不等式:xy020xy-1233知识要点二次函数y=ax2+bx+c的图象与x轴交点a>0a<0

有两个交点x1,x2(x1<x2)有一个交点x0没有交点二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次不等式的关系y<0,x1<x<x2.y>0,x2<x或x<x2.y>0,x1<x<x2.y<0,x2<x或x<x2.y>0.x0之外的所有实数;y<0,无解y<0.x0之外的所有实数;y>0,无解.y>0,所有实数;y<0,无解y<0,所有实数;y>0,无解知识要点二次函数y=ax2+bx+c的图象与x轴交点a>0a34

判断方程

ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()

A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26

x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09C1.根据下列表格的对应值:当堂练习判断方程ax2+bx+c=0(a≠0,a,b,c为常352.若二次函数y=-x2+2x+k的部分图象如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2=

;-1yOx133.一元二次方程3x2+x-10=0的两个根是x1=-2,x2=,那么二次函数y=3x2+x-10与x轴的交点坐标是

.(-2,0)(,0)2.若二次函数y=-x2+2x+k的部分图象如图所示,且关于364.若一元二次方程无实根,则抛物线图象位于()A.x轴上方B.第一、二、三象限C.x轴下方D.第二、三、四象限A5.二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(

)A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0D4.若一元二次方程无实根,则抛物376.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0.∴k≤4且k≠3.综上所述,k的取值范围是k≤4.6.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,387.某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时距地面

米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.

(1)建立如图所示的平面直角坐标系,问此球能否准确投中?

7.某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已39解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A(0,),B(4,4),C(7,3),其中B是抛物线的顶点.设二次函数关系式为y=a(x-h)2+k,将点A、B的坐标代入,可得y=-(x-4)2+4.将点C的坐标代入上式,得左边=3,右边=-(7-4)2+4=3,左边=右边,即点C在抛物线上.所以此球一定能投中;解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A(040(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?(2)将x=1代入函数关系式,得y=3.因为3.1>3,所以盖帽能获得成功.(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的418.已知二次函数的图象,利用图象回答问题:

(1)方程的解是什么?

(2)x取什么值时,y>0

(3)x取什么值时,y<0

?xyO248解:(1)x1=2,x2=4;(2)x<2或x>4;(3)2<x<4.8.已知二次函数的图象,利用图象42判别式△=b2-4ac二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a≠0)的根不等式ax2+bx+c>0(a>0)的解集不等式ax2+bx+c<0(a>0)的解集x2x1xyOOx1=x2xyxOy△>0△=0△<0x1;x2x1=x2=-b/2a没有实数根x<x1或x>x2x≠x1的一切实数所有实数x1<x<x2无解无解课堂小结判别式△=b2-4ac二次函数y=ax2+bx+c(a>043见《学练优》本课时练习课后作业见《学练优》本课时练习课后作业44谢谢观赏谢谢观赏45二次函数与一元二次方程二次函数与一元二次方程二次函数与一元二次方程学习目标1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点)2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点)3.了解用图象法求一元二次方程的近似根.二次函数与一元二次方程二次函数与一元二次方程二次函数与一元二46学习目标1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点)2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点)3.了解用图象法求一元二次方程的近似根.学习目标1.通过探索,理解二次函数与一元二次方程(不等式)之47导入新课情境引入问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:

h=20t-5t2,考虑以下问题:导入新课情境引入问题如图,以40m/s的速度将小球沿与地面48讲授新课二次函数与一元二次方程的关系一(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?Oht1513∴当球飞行1s或3s时,它的高度为15m.解:解方程15=20t-5t2,

t2-4t+3=0,

t1=1,t2=3.你能结合上图,指出为什么在两个时间求的高度为15m吗?h=20t-5t2讲授新课二次函数与一元二次方程的关系一(1)球的飞行高度能否49(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?你能结合图形指出为什么只在一个时间球的高度为20m?Oht202解方程:20=20t-5t2,t2-4t+4=0,t1=t2=2.当球飞行2秒时,它的高度为20米.h=20t-5t2(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?50(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.h=20t-5t2(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时51(4)球从飞出到落地要用多少时间?Oht0=20t-5t2,t2-4t=0,t1=0,t2=4.当球飞行0秒和4秒时,它的高度为0米.即0秒时球地面飞出,4秒时球落回地面.h=20t-5t2(4)球从飞出到落地要用多少时间?Oht0=20t-5t2,52(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.h=20t-5t2(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时53

从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?

一般地,当y取定值且a≠0时,二次函数为一元二次方程.如:y=5时,则5=ax2+bx+c就是一个一元二次方程.为一个常数(定值)从上面发现,二次函数y=ax2+bx+c何时为一元二54所以二次函数与一元二次方程关系密切.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.所以二次函数与一元二次方程关系密切.例如,已知二次函数y=55利用二次函数深入讨论一元二次方程二思考观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.利用二次函数深入讨论一元二次方程二思考561xyOy=x2-6x+9y=x2-x+1y=x2+x-2观察图象,完成下表:抛物线与x轴公共点个数公共点横坐标相应的一元二次方程的根y=x2-x+1y=x2-6x+9y=x2+x-20个1个2个x2-x+1=0无解0x2-6x+9=0,x1=x2=3-2,1x2+x-2=0,x1=-2,x2=11xyOy=x2-6x+9y=x2-x+1y=x57知识要点二次函数y=ax2+bx+c的图象与x轴交点一元二次方程ax2+bx+c=0的根b2-4ac有两个交点有两个不相等的实数根b2-4ac>0有两个重合的交点有两个相等的实数根b2-4ac

=0没有交点没有实数根b2-4ac<0二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系知识要点二次函数y=ax2+bx+c的图象与x轴交点一元二次58例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.(1)证明:∵m≠0,∴Δ=(m+2)2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,∴此抛物线与x轴总有两个交点;例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠59(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.h=20t-5t2(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时60(2)解:令y=0,则(x-1)(mx-2)=0,所以x-1=0或mx-2=0,解得x1=1,x2=.当m为正整数1或2时,x2为整数,即抛物线与x轴总有两个交点,且它们的横坐标都是整数.所以正整数m的值为1或2.例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.(2)解:令y=0,则(x-1)(mx-2)=0,例1:已知61变式:已知:抛物线y=x2+ax+a-2.(1)求证:不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)设这个二次函数的图象与x轴相交于A(x1,0),B(x2,0),且x1、x2的平方和为3,求a的值.(1)证明:∵Δ=a2-4(a-2)=(a-2)2+4>0,∴不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)解:∵x1+x2=-a,x1·x2=a-2,∴x1(2)+x2(2)=(x1+x2)2-2x1·x2=a2-2a+4=3,∴a=1.变式:已知:抛物线y=x2+ax+a-2.(1)证明:∵Δ=62例2如图,丁丁在扔铅球时,铅球沿抛物线

运行,其中x是铅球离初始位置的水平距离,y是铅球离地面的高度.(1)当铅球离地面的高度为2.1m时,它离初始位置的水平距离是多少?(2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少?(3)铅球离地面的高度能否达到3m?为什么?例2如图,丁丁在扔铅球时,铅球沿抛物线63解

(1)由抛物线的表达式得即解得即当铅球离地面的高度为2.1m时,它离初始位置的水平距离是1m或5m.(1)当铅球离地面的高度为2.1m时,它离初始位置的水平距离是多少?解(1)由抛物线的表达式得(1)当铅球离地面的高度为2.64(2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少?(2)由抛物线的表达式得

即解得即当铅球离地面的高度为2.5m时,它离初始位置的水平距离是3m.(2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距65(3)由抛物线的表达式得即因为所以方程无实根.所以铅球离地面的高度不能达到3m.(3)铅球离地面的高度能否达到3m?为什么?(3)由抛物线的表达式得(3)铅球离地面的高度能否达到3m?66一元二次方程与二次函数紧密地联系起来了.

一元二次方程与二次函数紧密地联系起来了.67例3:求一元二次方程的根的近似值(精确到0.1).分析:一元二次方程x²-2x-1=0的根就是抛物线y=x²-2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.利用二次函数求一元二次方程的近似解三例3:求一元二次方程68解:画出函数y=x²-2x-1的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.解:画出函数y=x²-2x-1的图象(如下图),由图象可69

先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:x…-0.4-0.5…y…-0.040.25…观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4.先求位于-1到0之间的根,由图象可估计这个根是70一元二次方程的图象解法利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数y=2x2+x-15的图象;(2)观察估计二次函数

y=2x2+x-15的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.方法归纳一元二次方程的图象解法利用二次函数的图象求一元二次方程2x271例4:已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的近似根为(

)A.x1≈-2.1,x2≈0.1B.x1≈-2.5,x2≈0.5C.x1≈-2.9,x2≈0.9D.x1≈-3,x2≈1解析:由图象可得二次函数y=ax2+bx+c图象的对称轴为x=-1,而对称轴右侧图象与x轴交点到原点的距离约为0.5,∴x2≈0.5;又∵对称轴为x=-1,则

=-1,∴x1=2×(-1)-0.5=-2.5.故x1≈-2.5,x2≈0.5.故选B.B例4:已知二次函数y=ax2+bx+c的图象如图所示,则一元72

解答本题首先需要根据图象估计出一个根,再根据对称性计算出另一个根,估计值的精确程度,直接关系到计算的准确性,故估计尽量要准确.方法总结解答本题首先需要根据图象估计出一个根,再根据对称性73二次函数与一元二次不等式的关系(拓展)四问题1函数y=ax2+bx+c的图象如图,那么方程ax2+bx+c=0的根是_____

_____;不等式ax2+bx+c>0的解集是___________;不等式ax2+bx+c<0的解集是_________.

3-1Oxyx1=-1,x2=3x<-1或x>3-1<x<3合作探究二次函数与一元二次不等式的关系(拓展)四问题1函数y=74拓广探索:函数y=ax2+bx+c的图象如图,那么方程ax2+bx+c=2的根是______________;不等式ax2+bx+c>2的解集是___________;不等式ax2+bx+c<2的解集是_________.

3-1Ox2(4,2)(-2,2)x1=-2,x2=4x<-2或x>4-2<x<4y拓广探索:函数y=ax2+bx+c的图象如图,那么3-1Ox75问题2:如果不等式ax2+bx+c>0(a≠0)的解集是x≠2的一切实数,那么函数y=ax2+bx+c的图象与x轴有____个交点,坐标是______.方程ax2+bx+c=0的根是______.1(2,0)x=22Ox问题2:如果不等式ax2+bx+c>0(a≠0)的解集是x≠76问题3:如果方程ax2+bx+c=0(a≠0)没有实数根,那么函数y=ax2+bx+c的图象与x轴有______个交点;不等式ax2+bx+c<0的解集是多少?0解:(1)当a>0时,ax2+bx+c<0无解;(2)当a<0时,ax2+bx+c<0的解集是一切实数.3-1Ox问题3:如果方程ax2+bx+c=0(a≠0)没有实数根,77试一试:利用函数图象解下列方程和不等式:(1)①-x2+x+2=0;②-x2+x+2>0;③-x2+x+2<0.(2)①x2-4x+4=0;②x2-4x+4>0;③x2-4x+4<0.(3)①-x2+x-2=0;②-x2+x-2>0;③-x2+x-2<0.xy020xy-12xy0y=-x2+x+2x1=-1,x2=21<x<2x1<-1,x2>2x2-4x+4=0

x=2

x≠2的一切实数

x无解-x2+x-2=0

x无解

x无解

x为全体实数试一试:利用函数图象解下列方程和不等式:xy020xy-1278知识要点二次函数y=ax2+bx+c的图象与x轴交点a>0a<0

有两个交点x1,x2(x1<x2)有一个交点x0没有交点二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次不等式的关系y<0,x1<x<x2.y>0,x2<x或x<x2.y>0,x1<x<x2.y<0,x2<x或x<x2.y>0.x0之外的所有实数;y<0,无解y<0.x0之外的所有实数;y>0,无解.y>0,所有实数;y<0,无解y<0,所有实数;y>0,无解知识要点二次函数y=ax2+bx+c的图象与x轴交点a>0a79

判断方程

ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()

A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26

x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09C1.根据下列表格的对应值:当堂练习判断方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论