![函数定义域的类型和求法_第1页](http://file4.renrendoc.com/view/c08fadf2cfb7c0c54797c3c479e50699/c08fadf2cfb7c0c54797c3c479e506991.gif)
![函数定义域的类型和求法_第2页](http://file4.renrendoc.com/view/c08fadf2cfb7c0c54797c3c479e50699/c08fadf2cfb7c0c54797c3c479e506992.gif)
![函数定义域的类型和求法_第3页](http://file4.renrendoc.com/view/c08fadf2cfb7c0c54797c3c479e50699/c08fadf2cfb7c0c54797c3c479e506993.gif)
![函数定义域的类型和求法_第4页](http://file4.renrendoc.com/view/c08fadf2cfb7c0c54797c3c479e50699/c08fadf2cfb7c0c54797c3c479e506994.gif)
![函数定义域的类型和求法_第5页](http://file4.renrendoc.com/view/c08fadf2cfb7c0c54797c3c479e50699/c08fadf2cfb7c0c54797c3c479e506995.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于函数定义域的类型和求法第一页,共九页,2022年,8月28日1.当函数是整式时例如那么函数的定义域是实数集R。2.如果函数中含有分式,那么函数的分母必须不为零。3.如果函数中含有偶次根式,那么根号内的式子必须不小于零。4.零的零次幂没有意义,即f(x)=x0,x≠0。5.对数的真数必须大于零。6.对数的底数满足大于零且不等于1。求函数定义域注意以下几点:一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。第二页,共九页,2022年,8月28日例1求函数的定义域。解:要使函数有意义,则必须满足由①解得x≤-3或x≥5 ③由②解得x≠5或x≠-11④由③和④求交集得x≤-3且x≠-11或x>5故所求函数的定义域为{x|x≤-3且x≠-11}∪{x|x>5}。第三页,共九页,2022年,8月28日(-2,-1]∪[1,2)(2≤x<4且x≠3(1/2,1]X≥1/10,且x≠1)第四页,共九页,2022年,8月28日二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。(1)已知f(x)的定义域,求f[g(x)]的定义域。其解法是:已知f(x)的定义域是[a,b]求f[g(x)]的定义域是解a≤g(x)≤b,即为所求的定义域。例1已知f(x)的定义域为[-2,2],求f(x2-1)的定义域。解:令-2≤x2-1≤2,得-1≤x2≤3,即0≤x2≤3,因此,从而故函数的定义域是第五页,共九页,2022年,8月28日(2)已知f[g(x)]的定义域,求f(x)的定义域。其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由a≤x≤b,求g(x)的值域,即所求f(x)的定义域。例2已知f(2x+1)的定义域为[1,2],求f(x)的定义域。解:因为1≤x≤2,2≤2x≤4,3≤2x+1≤5.即函数f(x)的定义域是{x|3≤x≤5}。(3)已知f(2x-1)的定义域是[0,1],求f(3x)的定义域。解:因为0≤x≤1,0≤2x≤2,-1≤2x-1≤1.所以函数f(3x)的定义域是-1≤3x≤1即
{x|-1/3≤x≤1/3}。第六页,共九页,2022年,8月28日例3已知函数
的定义域为R求实数m的取值范围。分析:函数的定义域为R,表明mx2-6mx+8+m≥0,使一切x∈R都成立,由x2项的系数是m,所以应分m=0或m≠0进行讨论。解:当m=0时,函数的定义域为R;当m≠0时,mx2-6mx+8+m≥0是二次不等式,其对一切实数x都成立的充要条件是综上可知0≤m≤1。注:不少同学容易忽略m=0的情况,希望通过此例解决问题。第七页,共九页,2022年,8月28日例4已知函数
的定义域是R,求实数k的取值范围。解:要使函数有意义,则必须kx2+4kx+3≠0恒成立,因为f(x)的定义域为R,即kx2+4kx+3=0无实数根①当k≠0时,△=16k2-4×3k<0恒成立,解得②当k=0时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年呼吸功能评估仪行业深度调研及发展战略咨询报告
- 天然气项目投资分析报告考核试卷
- 2025-2030年数字化医疗影像系统行业跨境出海战略研究报告
- 2025-2030年数控铣床高速切削企业制定与实施新质生产力战略研究报告
- 印刷包装行业人才匹配协议
- 拍卖行业信息技术安全防护考核试卷
- 婚纱店装修合同管理费标准
- 咖啡馆品牌合作伙伴关系建立考核试卷
- 消防设备居间协议
- 市政道路工程主要工程项目施工方法
- 缩窄性心包炎课件
- 《工程电磁场》配套教学课件
- 辽宁省锦州市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- 改革开放的历程(终稿)课件
- 职位管理手册
- IPQC首检巡检操作培训
- (中职)Dreamweaver-CC网页设计与制作(3版)电子课件(完整版)
- 东南大学 固体物理课件
- 行政人事助理岗位月度KPI绩效考核表
- 纪检监察机关派驻机构工作规则全文详解PPT
- BP-2C 微机母线保护装置技术说明书 (3)
评论
0/150
提交评论