2023年山西省长治市潞州区长治市第二中学高考考前模拟数学试题(含答案解析)_第1页
2023年山西省长治市潞州区长治市第二中学高考考前模拟数学试题(含答案解析)_第2页
2023年山西省长治市潞州区长治市第二中学高考考前模拟数学试题(含答案解析)_第3页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列命题为真命题的个数是()(其中,为无理数)①;②;③.A.0 B.1 C.2 D.32.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交3.费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()A. B. C. D.4.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为().A. B. C.1 D.5.若θ是第二象限角且sinθ=,则=A. B. C. D.6.下列不等式成立的是()A. B. C. D.7.设集合、是全集的两个子集,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知实数x,y满足,则的最小值等于()A. B. C. D.9.已知直线和平面,若,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要10.已知集合,定义集合,则等于()A. B.C. D.11.在三棱锥中,,,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为()A. B. C. D.12.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.0二、填空题:本题共4小题,每小题5分,共20分。13.如图,直三棱柱中,,,,P是的中点,则三棱锥的体积为________.14.函数满足,当时,,若函数在上有1515个零点,则实数的范围为___________.15.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_____.16.命题“对任意,”的否定是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角的对边分别为,且满足.(1)求角的大小;(2)若的面积为,求的周长的最小值.18.(12分)如图,在直三棱柱中,分别是中点,且,.求证:平面;求点到平面的距离.19.(12分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.(1)求点,的极坐标;(2)若点为曲线上的动点,为线段的中点,求的最大值.20.(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.21.(12分)在中,.(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围.22.(10分)已知函数.(1)解不等式;(2)记函数的最大值为,若,证明:.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】

对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于③中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.【题目详解】由题意,对于①中,由,可得,根据不等式的性质,可得成立,所以是正确的;对于②中,设函数,则,所以函数为单调递增函数,因为,则又由,所以,即,所以②不正确;对于③中,设函数,则,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得最大值,最大值为,所以,即,即,所以是正确的.故选:C.【答案点睛】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.2.D【答案解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.3.B【答案解析】

基本事件总数,能表示为两个不同费马素数的和只有,,,共有个,根据古典概型求出概率.【题目详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,,,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【答案点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题.4.B【答案解析】

首先由三视图还原几何体,进一步求出几何体的棱长.【题目详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为.故选:B.【答案点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题.5.B【答案解析】由θ是第二象限角且sinθ=知:,.所以.6.D【答案解析】

根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【题目详解】对于,,,错误;对于,在上单调递减,,错误;对于,,,,错误;对于,在上单调递增,,正确.故选:.【答案点睛】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.7.C【答案解析】

作出韦恩图,数形结合,即可得出结论.【题目详解】如图所示,,同时.故选:C.【答案点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.8.D【答案解析】

设,,去绝对值,根据余弦函数的性质即可求出.【题目详解】因为实数,满足,设,,,恒成立,,故则的最小值等于.故选:.【答案点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.9.B【答案解析】

由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【题目详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B【答案点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.10.C【答案解析】

根据定义,求出,即可求出结论.【题目详解】因为集合,所以,则,所以.故选:C.【答案点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.11.A【答案解析】

设的中点为O先求出外接圆的半径,设,利用平面ABC,得,在及中利用勾股定理构造方程求得球的半径即可【题目详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【答案点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题12.B【答案解析】

先求出,再利用投影公式求解即可.【题目详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【答案点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】

证明平面,于是,利用三棱锥的体积公式即可求解.【题目详解】平面,平面,,又.平面,是的中点,.

故答案为:【答案点睛】本题考查了线面垂直的判定定理、三棱锥的体积公式,属于基础题.14.【答案解析】

由已知,在上有3个根,分,,,四种情况讨论的单调性、最值即可得到答案.【题目详解】由已知,的周期为4,且至多在上有4个根,而含505个周期,所以在上有3个根,设,,易知在上单调递减,在,上单调递增,又,.若时,在上无根,在必有3个根,则,即,此时;若时,在上有1个根,注意到,此时在不可能有2个根,故不满足;若时,要使在有2个根,只需,解得;若时,在上单调递增,最多只有1个零点,不满足题意;综上,实数的范围为.故答案为:【答案点睛】本题考查利用导数研究函数的零点个数问题,涉及到函数的周期性、分类讨论函数的零点,是一道中档题.15.【答案解析】

计算得到||,||cosα﹣1,解得cosα,根据三角函数的有界性计算范围得到答案.【题目详解】由()•()=0可得()•||•||cosα﹣1×2cos||•||cosα﹣1,α为与的夹角.再由2•1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案为.【答案点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.16.存在,使得【答案解析】试题分析:根据命题否定的概念,可知命题“对任意,”的否定是“存在,使得”.考点:命题的否定.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【答案解析】

(1)因为,所以,由余弦定理得,化简得,可得,解得,又因为,所以.(6分)(2)因为,所以,则(当且仅当时,取等号).由(1)得(当且仅当时,取等号),解得.所以(当且仅当时,取等号),所以的周长的最小值为.18.(1)详见解析;(2).【答案解析】

(1)利用线面垂直的判定定理和性质定理即可证明;(2)取中点为,则,证得平面,利用等体积法求解即可.【题目详解】(1)因为,,,是的中点,,为直三棱柱,所以平面,因为为中点,所以平面,,又,平面(2),又分别是中点,.由(1)知,,又平面,取中点为,连接如图,则,平面,设点到平面的距离为,由,得,即,解得,点到平面的距离为.【答案点睛】本题考查线面垂直的判定定理和性质定理、等体积法求点到面的距离;考查逻辑推理能力和运算求解能力;熟练掌握线面垂直的判定定理和性质定理是求解本题的关键;属于中档题.19.(1),;(2).【答案解析】

(1)利用极坐标和直角坐标的互化公式,即得解;(2)设点的直角坐标为,则点的直角坐标为.将此代入曲线的方程,可得点在以为圆心,为半径的圆上,所以的最大值为,即得解.【题目详解】(1)因为点在曲线上,为正三角形,所以点在曲线上.又因为点在曲线上,所以点的极坐标是,从而,点的极坐标是.(2)由(1)可知,点的直角坐标为,B的直角坐标为设点的直角坐标为,则点的直角坐标为.将此代入曲线的方程,有即点在以为圆心,为半径的圆上.,所以的最大值为.【答案点睛】本题考查了极坐标和参数方程综合,考查了极坐标和直角坐标互化,参数方程的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.20.(1);(2).【答案解析】

(1)只需分,,三种情况讨论即可;(2)在区间上恒成立,转化为,只需求出即可.【题目详解】(1)当时,,此时不等式无解;当时,,由得;当时,,由得,综上,不等式的解集为;(2)依题意,在区间上恒成立,则,当时,;当时,,所以当时,,由得或,所以实数的取值范围为.【答案点睛】本题考查绝对值不等式的解法、不等式恒成立问题,考查学生分类讨论与转化与化归的思想,是一道基础题.21.(1)(2)【答案解析】

(1)先利用同角的三角函数关系求得,再由求解即可;(2)在中,由正弦定理可得,则,再由求解即可.【题目详解】解:(1)在中,,所以,所以(2)由(1)可知,所以,在中,因为,所以,因为,所以,所以.【答案点睛】本题考查已知三角函数值求值,考查正弦定理的应用.22.(1);(2)证明见解析【答案解析】

(1)将函数整理为分段函数形式可得,进而分类讨论求解不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论