




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2017年高考“最后三十天”专题透析2017年高考“最后三十天”专题透析好教育云平台——教育因你我而变好教育云平台——教育因你我而变第4课时随机事件的概率1.将一个骰子抛掷一次,设事件A表示向上的一面出现的点数不超过3,事件B表示向上的一面出现的点数不小于4,事件C表示向上的一面出现奇数点,则()A.A与B是对立事件 B.A与B是互斥而非对立事件C.B与C是互斥而非对立事件 D.B与C是对立事件答案A解析由题意知,事件A包含的基本事件为向上点数为1,2,3,事件B包含的基本事件为向上的点数为4,5,6.事件C包含的点数为1,3,5.A与B是对立事件,故选A.2.从一堆产品(其中正品与次品都多于2件)中任取2件,下列事件是互斥事件但不是对立事件的是()A.恰好有1件次品和恰好有2件次品B.至少有1件次品和全是次品C.至少有1件正品和至少有1件次品D.至少有1件次品和全是正品答案A解析依据互斥和对立事件的定义知,B,C都不是互斥事件;D不但是互斥事件而且是对立事件;只有A是互斥事件但不是对立事件.3.(2018·广东茂名模拟)在{1,3,5}和{2,4}两个集合中各取一个数字组成一个两位数,则这个数能被4整除的概率是()A.eq\f(1,3) B.eq\f(1,2)C.eq\f(1,6) D.eq\f(1,4)答案D解析符合条件的所有两位数为12,14,21,41,32,34,23,43,52,54,25,45,共12个,能被4整除的数为12,32,52,共3个,故所求概率P=eq\f(3,12)=eq\f(1,4).4.4张卡片上分别写有数字1,2,3,4,若从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.eq\f(1,3) B.eq\f(1,2)C.eq\f(2,3) D.eq\f(3,4)答案C解析从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P=eq\f(2,3).5.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到次数138576131810119则取到号码为奇数的卡片的频率是()A.0.53 B.0.5C.0.47 D.0.37答案A解析取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为eq\f(53,100)=0.53,故选A.6.(2016·天津改编)甲、乙两人下棋,和棋的概率为eq\f(1,2),乙获胜的概率为eq\f(1,3),则甲获胜的概率和甲不输的概率分别为()A.eq\f(1,6),eq\f(1,6) B.eq\f(1,2),eq\f(2,3)C.eq\f(1,6),eq\f(2,3) D.eq\f(2,3),eq\f(1,2)答案C解析“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率P=1-eq\f(1,2)-eq\f(1,3)=eq\f(1,6).设事件A为“甲不输”,则A可看作是“甲胜”与“和棋”这两个互斥事件的并事件,所以P(A)=eq\f(1,6)+eq\f(1,2)=eq\f(2,3).(或设事件A为“甲不输”,则A可看作是“乙胜”的对立事件.所以P(A)=1-eq\f(1,3)=eq\f(2,3))7.(2013·陕西文)对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是()A.0.09 B.0.20C.0.25 D.0.45答案D解析由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.8.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》……《缉古算经》等10部专著,有着丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部名著中选择的2部作为“数学文化”校本课程学习内容,则所选的2部名著中至少有1部是魏晋南北朝时期的名著的概率为()A.eq\f(14,15) B.eq\f(13,15)C.eq\f(2,9) D.eq\f(7,9)答案A解析方法一:从10部名著中选择2部名著的方法数为C102=45,所选的2部都为魏晋南北朝时期的名著的方法数为C72=21,只有1部为魏晋南北朝时期的名著的方法数为C71×C31=21,于是事件“所选的2部名著中至少有1部是魏晋南北朝时期的名著”的概率P=eq\f(42,45)=eq\f(14,15).故选A.方法二:从10部名著中选择2部名著的方法数为C102=45,所选的2部都不是魏晋南北朝时期的名著的方法数为C32=3,由对立事件的概率计算公式得P=1-eq\f(3,45)=eq\f(14,15).故选A.9.将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为()A.eq\f(19,36) B.eq\f(1,2)C.eq\f(5,9) D.eq\f(17,36)答案A解析若方程有实根,则Δ=b2-4c≥0,当有序实数对(b,c)的取值为(6,6),(6,5),…,(6,1),(5,6),(5,5),…,(5,1),(4,4),…,(4,1),(3,2),(3,1),(2,1)时方程有实根,共19种情况,而(b,c)等可能的取值共有36种情况,所以,方程有实根的概率为P=eq\f(19,36).10.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为4的概率是________.答案eq\f(1,12)解析本题基本事件共6×6个,点数和为4的有3个事件为(1,3),(2,2),(3,1),故P=eq\f(3,6×6)=eq\f(1,12).11.据统计,某食品企业在一个月内被消费者投诉次数为0,1,2的概率分别为0.4,0.5,0.1.则该企业在一个月内被消费者投诉不超过1次的概率为________.答案0.9解析方法一:记“该食品企业在一个月内被消费者投诉的次数为0”为事件A,“该食品企业在一个月内被消费者投诉的次数为1”为事件B,“该食品企业在一个月内被消费者投诉的次数为2”为事件C,“该食品企业在一个月内被消费者投诉的次数不超过1”为事件D,而事件D包含事件A与B,所以P(D)=P(A)+P(B)=0.4+0.5=0.9.方法二:记“该食品企业在一个月内被消费者投诉的次数为2”为事件C,“该食品企业在一个月内被消费者投诉不超过一次”为事件D,由题意知C与D是对立事件,所以P(D)=1-P(C)=1-0.1=0.9.12.(2018·江苏苏北四市调研)从1,2,3,4,5,6这六个数中一次随机地取两个数,则所取两个数的和能被3整除的概率为________.答案eq\f(1,3)解析从六个数中一次随机地取两个数,有15种等可能的结果,而所取两个数的和能被3整除包含5种结果,即(1,2),(1,5),(2,4),(3,6),(4,5),∴所取两个数的和能被3整除的概率为eq\f(5,15)=eq\f(1,3).13.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额/元01000200030004000车辆数/辆500130100150120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.答案(1)0.27(2)0.24解析(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=eq\f(150,1000)=0.15,P(B)=eq\f(120,1000)=0.12.由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24辆.所以样本车辆中新司机车主获赔金额为4000元的频率为eq\f(24,100)=0.24,由频率估计概率得P(C)=0.24.14.下表为某班的英语及数学成绩,全班共有学生50人,成绩分为1~5分五个档次.例如表中所示英语成绩为4分的学生共14人,数学成绩为5分的共5人.设x,y分别表示英语成绩和数学成绩.y/分人数x分5432151310141075132109321b60a100113(1)x=4的概率是多少?x=4且y=3的概率是多少?x≥3的概率是多少?(2)x=2的概率是多少?a+b的值是多少?答案(1)eq\f(7,25),eq\f(7,50),eq\f(7,10)(2)eq\f(1,5),3解析(1)P(x=4)=eq\f(1+0+7+5+1,50)=eq\f(7,25);P(x=4且y=3)=eq\f(7,50),P(x≥3)=P(x=3)+P(x=4)+P(x=5)=eq\f(2+1+0+9+3,50)+eq\f(7,25)+eq\f(1+3+1+0+1,50)=eq\f(7,10).(2)P(x=2)=1-P(x=1)-P(x≥3)=1-eq\f(1,10)-eq\f(7,10)=eq\f(1,5).又∵P(x=2)=eq\f(1+b+6+0+a,50)=eq\f(1,5),∴a+b=3.15.(2018·辽宁六盘山高级中学一模)某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图.(1)写出a的值;(2)试估计该校所有学生中,阅读时间不少于30个小时的学生人数;(3)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率.答案(1)0.03(2)870(3)0.7解析(1)由题意得a=0.03.(2)∵初中生中,阅读时间不少于30个小时的学生频率为(0.020+0.005)×10=0.25.∴所有初中生中,阅读时间不少于30个小时的学生约有0.25×1800=450人.同理,高中生中,阅读时间不少于30个小时的学生频率为(0.03+0.005)×10=0.35,∴所有高中生中.阅读时间不少于30个小时的学生约有0.35×1200=420人.∴该校所有学生中,阅读时间不少于30个小时的学生人数约有450+420=870.(3)由分层抽样知,抽取的初中生有60名,高中生有40名.记“从阅读时间不足10个小时的样本学生中随机抽取2人,至少抽到1名高中生”为事件A.初中生中,阅读时间不足10个小时的学生频率为0.005×10=0.05,样本人数为0.05×60=3.高中生中,阅读时间不足10个小时的学生频率为0.005×10=0.05,样本人数为0.05×40=2.记这3名初中生为A1,A2,A3,这2名高中生为B1,B2.则从阅读时间不足10个小时的样本学生中随机抽取2人,所有可能的情况有C52=10种其中至少有一名高中生的情况有C52-C32=7种∴所求概率为eq\f(7,10)=0.7.16.(2018·四川成都一诊)已知国家某5A级大型景区对拥挤等级与每百游客数量n(单位:百人)的关系有如下规定:当n∈[0,100)时,拥挤等级为“优”;当n∈[100,200)时,拥挤等级为“良”;当n∈[200,300)时,拥挤等级为“拥挤”;当n≥300时,拥挤等级为“严重拥挤”.该景区对6月份的游客数量作出如图的统计数据.(1)下面是根据统计数据得到的频率分布表,求出a,b的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);游客数量(单位:百人)[0,100)[100,200)[200,300)[300,400]天数a1041频率beq\f(1,3)eq\f(2,15)eq\f(1,30)(2)某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.答案(1)15,eq\f(1,2),120(百人)(2)eq\f(3,10)解析(1)由题图知游客人数在[0,100)范围内共有15天,∴a=15,b=eq\f(15,30)=eq\f(1,2).游客人数的平均数为50×eq\f(1,2)+150×eq\f(1,3)+250×eq\f(2,15)+350×eq\f(1,30)=120(百人).(2)设A表示事件“2天遇到的游客拥挤等级均为‘优’”.从5天中任选2天的选择方法有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个基本事件,其中事件A包括(1,4),(1,5),(4,5),共3个基本事件,∴P(A)=eq\f(3,10).即他这2天遇到的游客拥挤等级均为“优”的概率为eq\f(3,10).17.(2017·课标全国Ⅲ,文)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.答案(1)0.6(2)0.8解析(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25℃.由表格数据知,最高气温低于25℃的频率为eq\f(2+16+36,90)=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25℃,则Y=6×450-4×450=900;若最高气温位于区间[20,25),则Y=6×300+2×(450-300)-4×450=300;若最高气温低于20℃,则Y=6×200+2×(450-200)-4×450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20℃,由表格数据知,最高气温不低于20℃的频率为eq\f(36+25+7+4,90)=0.8,因此Y大于零的概率的估计值为0.8.1.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:①两球都不是白球;②两球恰有一个白球;③两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玛氏校招工作总结
- 2025年数学老师课堂教育方案
- 2025年学校暑期校本培训个人方案
- 2025年秋季幼儿园教研工作方案演讲稿
- 手术后病人的护理措施
- 2025年新生军训活动方案
- Excel在人力资源管理的应用1
- 避孕知识培训课件微盘
- 武汉大学《普通微生物学微生物学》2023-2024学年第二学期期末试卷
- 安徽蚌埠二中2024-2025学年高三下学期自测卷(三)线下考试物理试题含解析
- 建筑轻质条板隔墙技术规程知识培训
- 2023年EAS系统标准操作手册固定资产
- 机械制造技术基础(课程课件完整版)
- 《预防未成年人犯罪》课件(图文)
- 江西省南昌市高三二模考试地理试题
- 电仪TPM管理方案
- 风电基础施工方案
- 2021北师大版小学二年级下册《人与自我》教案
- 【人教版】《劳动教育实践活动手册》四年级下册 劳动项目一 课件
- 二十届三中全会知识点试题及答案【200题】
- 高级卫生专业技术资格考试病媒生物控制技术(096)(副高级)自测试卷及解答参考
评论
0/150
提交评论