




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Unit4:TrigonometricFunctions
Lesson2:SinusoidalFunctionsUnit4:TrigonometricFunctionSinusoidagraphwhoseshapelookslikethegraphofsin(x)sin,cosandtransformationsofthesefunctionsareallsinusoids(AKAsinusoidalfunctions) SinusoidagraphwhoseshapeloTransformationsInLesson1,welookedatthedifferentfunctiontransformationsWecansummarizethesewiththegeneralfunctiontransformation
Ifweapplythistothesineandcosinefunctions,wegetTransformationsInLesson1,weTransformationsForsimplicity,considerthetransformedsinefunction:verticalstretches,compressions&reflectionsGivesyoutheamplitudeHorizontalstretches,compressions&reflectionsGivesyoutheperiod:ShiftsupordownGivesyoutheaxisofcurveShiftsleftorrightCalledthephaseshiftTransformationsForsimplicity,Example1Whatistheamplitude,period,phaseshiftandaxisofcurveofExample1WhatistheamplitudeExample1:SolutionIngeneral:Wehave:a=3c=–1k=2theamplitudeis3theaxisofcurveisy=–1d=thephaseshiftistheperiodisExample1:SolutionIngeneral:Example2Whatistheamplitude,period,phaseshiftandverticalshiftofExample2WhatistheamplitudeExample2:SolutionIngeneral:Wehave:FACTOR!a=–2c=6theamplitudeis2theaxisofcurveisy=6k=0.5IgnorethenegativeExample2:SolutionIngeneral:Example2:NotesThetipoftheday:Alwaysfactorthecoefficientonthex-termtocorrectlyidentifythetransformationsIfyoudon’t,yourphaseshiftwillbeincorrectReminder:Theamplitudeistheverticaldistancefromtheaxisofcurvetothemaximumvalue.So,althoughthevalueofacanbenegative,theamplitudeisalwayspositiveExample2:NotesThetipoftheExample3Whatistheequationofthecosinefunctionafterithasbeenstretchedsothatitsperiodis,itsamplitudeis8andithasexperiencedaphaseshiftoftotheleftandhasbeenshiftedup1unitExample3WhatistheequationExample3:Solutionamplitudeis8phaseshiftis(left)ShifteduponeunitTheperiodisa=8d=c=1Example3:SolutionamplitudeiExample4Whatistheequationofthesinefunctionafterithasbeenstretchedsothatitsperiodis4,ithasexperiencedaphaseshiftoftotherightandithasbeenreflectedinthex-axisExample4WhatistheequationExample4:SolutionamplitudeisunchangedFunctionisreflectedinthex-axisphaseshiftis(right)ThereisnoverticalshiftTheperiodis4a=1d=c=0a=-1Example4:SolutionamplitudeiExample4:NotesItispossiblefortheperiodtonotbeamultipleofπIfthisisthecase,thek-valuewillbeintermsofπTheperiodisrarelyamultipleofπinreal-worldapplicationsEx.motionofapendulum,theheightofthetides,voltageinanACcircuitExample4:NotesItispossibleTheGraphsofsin&cosInordertounderstandtransformationsofsinandcos,it’scrucialfortoknowwhatf(x)=sinxandf(x)=cosxlooklikeTohelpyouwiththis,alwaysthinkofthefive“keypoints”ofoneperiodforeachfunction:sinhasthreezeroes,onemaxandonemin.Eachperiodstartsontheaxisofcurvecoshastwozeroes,twomaxandonemin.EachperiodstartsatthemaximumBecausethesefunctionsareperiodicifyouneedmorethanoneperiod,simplyrepeatthepatternTheGraphsofsin&cosInordeHowtoDeterminetheEquationFromaGraphDrawahorizontallinethatdividesthefunctioninhalf(axisofcurve)Locatethestartingpointofasine/cosineperiodandmarkthispointwithanA.Locatetheendingpointofasine/cosineperiodandmarkthispointwithaB.Determinethehorizontaldistancebetweenthesetwopoints(theperiod).Determinetheverticaldistancefromtheaxisofcurvetothemaximumvalue(amplitude)Becausethex-coordinateofthestartingpointforasine/cosineperiodiszero,thex-coordinateofAgivesyouthephaseshiftHowtoDeterminetheEquationExample5Useasinecurvetodeterminetheequationofthefunctiongivenbelow-12Example5UseasinecurvetodExample5:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3PhaseshiftisExample5:SolutionAB12-12AxisExample5:Solutionamplitudeis3phaseshiftis(right)Axisofcurveis-9Theperiodisa=3d=c=-9Example5:SolutionamplitudeiExample6RepeatExample5,butthistimeuseacosinecurvetodeterminetheequationExample6RepeatExample5,butExample6:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3PhaseshiftisExample6:SolutionAB12-12AxisExample6:Solutionamplitudeis3phaseshiftis(left)Axisofcurveis-9Theperiodisa=3d=c=-9Example6:SolutionamplitudeiExample6:NotesWhenweusedacosinetomodelthefunctioninExample5,theonlychangewastothephaseshift.Thereasonforthis,isthatsineandcosinearethesamefunction–theonlydifferenceisaphaseshift:f(x)=sinxf(x)=cosxorExample6:NotesWhenweusedSummaryAsinusoidalfunctionisatransformedsineorcosinefunctionand,ingeneral,hastheequation:YoucandeterminetheequationofasinusoidusingasineorcosinefunctiongivenalistofpropertiesoragrapharelatestotheamplitudeamplitudeMUSTbepositivekrelatestotheperiodPerioddoesnotneedtobeintermsofπdisthephaseshiftcistheverticalshift(axisofcurve)Don’tforgettofactoroutwhat’sinfrontofx!f(x)=sinxandf(x)=cosxdifferonlybyaphaseshiftofSummaryAsinusoidalfunctioniPracticeProblemsP.275-277#1-6,8-13Note:Anygraphs/sketchescanbedoneusingyourTI-83ortheprogram“Graph”PracticeProblemsP.275-277#1Unit4:TrigonometricFunctions
Lesson2:SinusoidalFunctionsUnit4:TrigonometricFunctionSinusoidagraphwhoseshapelookslikethegraphofsin(x)sin,cosandtransformationsofthesefunctionsareallsinusoids(AKAsinusoidalfunctions) SinusoidagraphwhoseshapeloTransformationsInLesson1,welookedatthedifferentfunctiontransformationsWecansummarizethesewiththegeneralfunctiontransformation
Ifweapplythistothesineandcosinefunctions,wegetTransformationsInLesson1,weTransformationsForsimplicity,considerthetransformedsinefunction:verticalstretches,compressions&reflectionsGivesyoutheamplitudeHorizontalstretches,compressions&reflectionsGivesyoutheperiod:ShiftsupordownGivesyoutheaxisofcurveShiftsleftorrightCalledthephaseshiftTransformationsForsimplicity,Example1Whatistheamplitude,period,phaseshiftandaxisofcurveofExample1WhatistheamplitudeExample1:SolutionIngeneral:Wehave:a=3c=–1k=2theamplitudeis3theaxisofcurveisy=–1d=thephaseshiftistheperiodisExample1:SolutionIngeneral:Example2Whatistheamplitude,period,phaseshiftandverticalshiftofExample2WhatistheamplitudeExample2:SolutionIngeneral:Wehave:FACTOR!a=–2c=6theamplitudeis2theaxisofcurveisy=6k=0.5IgnorethenegativeExample2:SolutionIngeneral:Example2:NotesThetipoftheday:Alwaysfactorthecoefficientonthex-termtocorrectlyidentifythetransformationsIfyoudon’t,yourphaseshiftwillbeincorrectReminder:Theamplitudeistheverticaldistancefromtheaxisofcurvetothemaximumvalue.So,althoughthevalueofacanbenegative,theamplitudeisalwayspositiveExample2:NotesThetipoftheExample3Whatistheequationofthecosinefunctionafterithasbeenstretchedsothatitsperiodis,itsamplitudeis8andithasexperiencedaphaseshiftoftotheleftandhasbeenshiftedup1unitExample3WhatistheequationExample3:Solutionamplitudeis8phaseshiftis(left)ShifteduponeunitTheperiodisa=8d=c=1Example3:SolutionamplitudeiExample4Whatistheequationofthesinefunctionafterithasbeenstretchedsothatitsperiodis4,ithasexperiencedaphaseshiftoftotherightandithasbeenreflectedinthex-axisExample4WhatistheequationExample4:SolutionamplitudeisunchangedFunctionisreflectedinthex-axisphaseshiftis(right)ThereisnoverticalshiftTheperiodis4a=1d=c=0a=-1Example4:SolutionamplitudeiExample4:NotesItispossiblefortheperiodtonotbeamultipleofπIfthisisthecase,thek-valuewillbeintermsofπTheperiodisrarelyamultipleofπinreal-worldapplicationsEx.motionofapendulum,theheightofthetides,voltageinanACcircuitExample4:NotesItispossibleTheGraphsofsin&cosInordertounderstandtransformationsofsinandcos,it’scrucialfortoknowwhatf(x)=sinxandf(x)=cosxlooklikeTohelpyouwiththis,alwaysthinkofthefive“keypoints”ofoneperiodforeachfunction:sinhasthreezeroes,onemaxandonemin.Eachperiodstartsontheaxisofcurvecoshastwozeroes,twomaxandonemin.EachperiodstartsatthemaximumBecausethesefunctionsareperiodicifyouneedmorethanoneperiod,simplyrepeatthepatternTheGraphsofsin&cosInordeHowtoDeterminetheEquationFromaGraphDrawahorizontallinethatdividesthefunctioninhalf(axisofcurve)Locatethestartingpointofasine/cosineperiodandmarkthispointwithanA.Locatetheendingpointofasine/cosineperiodandmarkthispointwithaB.Determinethehorizontaldistancebetweenthesetwopoints(theperiod).Determinetheverticaldistancefromtheaxisofcurvetothemaximumvalue(amplitude)Becausethex-coordinateofthestartingpointforasine/cosineperiodiszero,thex-coordinateofAgivesyouthephaseshiftHowtoDeterminetheEquationExample5Useasinecurvetodeterminetheequationofthefunctiongivenbelow-12Example5UseasinecurvetodExample5:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3PhaseshiftisExample5:SolutionAB12-12AxisExample5:Solutionamplitudeis3phaseshiftis(right)Axisofcurveis-9Theperiodisa=3d=c=-9Example5:SolutionamplitudeiExample6RepeatExample5,butthistimeuseacosinecurvetodeterminetheequationExample6RepeatExample5,butExample6:SolutionAB12-12Axisofcurveis-9PeriodisπAmplitudeis3Pha
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新能源研发项目资金使用审计保障合同
- 生物医药产业基地女性员工生育保险与职业发展支持合同
- 境外房产投资收益汇回合规审核协议
- 电视剧剧本改编及影视制作授权服务合同
- 跨国物流保险理赔服务协议
- 商业空间精装修及软装一体化项目管理合同
- 股票期权行权分割与员工持股计划合作协议
- 国际展会样品冷藏柜租赁及维护保养服务协议
- 2025年应用软件设计服务项目建议书
- 2025年小型路面保洁设备合作协议书
- 湖南省张家界市慈利县实验高中-奋进关键期跨越分水岭-高二下开学家长会【课件】
- 2025年湖北省建设投资集团有限公司招聘笔试参考题库含答案解析
- 2025年中国证券融资融券行业市场调查研究及投资前景预测报告
- 《自动配送车从业人员能力要求 第1部分:安全员》
- 鱼跃前滚翻单元计划-2024-2025学年人教版体育与健康六年级上册
- DB32∕T 525-2010 学生公寓用纺织品
- 手机摄影知识培训课件
- 大学英语四级词汇完整表(打印背诵版)
- 食堂日管控周排查月调度记录表
- 我国绿氢氨醇产业发展现状及展望
- 中考物理总复习《电学综合计算》专项测试卷及答案
评论
0/150
提交评论