机器人中的人机交互系统-脑机接口课件_第1页
机器人中的人机交互系统-脑机接口课件_第2页
机器人中的人机交互系统-脑机接口课件_第3页
机器人中的人机交互系统-脑机接口课件_第4页
机器人中的人机交互系统-脑机接口课件_第5页
已阅读5页,还剩101页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

机器人中的人机交互系统脑机接口技术机器人中的人机交互系统脑机接口技术人机交互系统人机交互系统人机交互系统人机交互系统人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势脑机接口(Brain-ComputerInterface,BCI)BCI是不依赖于大脑外周神经与肌肉系统,在人脑和计算机或外部设备之间建立起来的一种通信系统。它能够为重度残疾但思维意识正常的患者提供一种新型的对外信息交流手段。脑中风、脑部或者脊髓外伤、脑瘫、肌肉萎缩、多发性硬化、肌萎缩性脊髓侧索硬化(AmyotrophicLateralSclerosis,ALS)脑机接口(Brain-ComputerInterface,BCI的组成BCI的组成脑电信号(electroencephalograph,EEG)按频率和振幅的不同,脑电信号可分为δ波(0.5~3Hz)、θ波(4~7Hz)、α波(8~13Hz)和β波(14~30Hz)。非常微弱而且其背景噪声很强、非平稳、非线性脑电信号(electroencephalograph,EEGBCI的发展BCI的研究最早可以追溯到20世纪70年代,早期研究的目的是让受试者通过生物反馈训练学习如何自主地控制脑电节律。Nowis等人的研究结果表明,受试者通过训练后能够自主调节脑电的α波1995年,全世界从事有关脑机接口研究的小组不超过6个,1999年已超过20个,2002年则有近40个;到现在已经发展到数以百计,主要分布在美国、加拿大、欧洲、日本、中国等地区。美国和欧洲BCI技术发展的较早,日本、中国起步较晚。BCI的发展BCI的研究最早可以追溯到20世纪70年代,早期BCI的发展目前,关于BCI的应用在国内外也得到了飞速的发展,而在这些应用中主要应用到脑电信号:视觉诱发电位(VisualEvokedPotential,VEP)、μ节律和β波、α波、P300电位。使用这些信号的BCI系统通过检测大脑对视觉刺激、注视或注意的方向、运动意图、认知活动的响应可实现光标控制、字符输入和轮椅控制等简单的功能。基于VEP的BCI系统的应用。VEP又可以分为瞬态VEP(TransientVEP,TVEP)和稳态VEP(Steady-StateVEP,SSVEP)内清华大学,2004年开发的BCI系统,残疾人利用SSVEP控制电视和空调、拨打电话并启动语音播放。BCI的发展目前,关于BCI的应用在国内外也得到了飞速的发展BCI的发展基于μ节律和β波的BCI系统的应用2005年,Tanaka等就通过想象左臂和右臂运动实现了智能轮椅左转和右转基于α波的BCI系统的应用在1967年,Dewan就采用视觉集中去同步α波幅值来发送Morse电报码。通过快速简短地向上转动眼球,即一个α波幅值的简短增加,代表一个“●”;通过延长眼睛向上的时间,即一个延长时间的α波幅值增加,代表一个“-”;电码之间的空格,则用集中注意力产生α波的阻断来表示。BCI的发展基于μ节律和β波的BCI系统的应用BCI的发展基于P300电位的BCI系统的应用Donchin等人设计了基于P300的虚拟打字机P3Speller,一个6×6字符矩阵按行或列依次闪烁,行和列出现的次序是随机的,于是包含使用者想要输入字符的行或列的闪烁就是能够诱发出P300的靶刺激,通过检测P300所在的行和列就能确定使用者想要输入的字符。BCI的发展基于P300电位的BCI系统的应用机器人中的人机交互系统——脑机接口课件脑电信号的处理预处理主要用于去除脑电信号的伪迹。主要伪迹:眼动伪迹、眼电、肌电以及心电等伪迹,工频伪迹。主要方法:滤波脑电信号的处理预处理主要用于去除脑电信号的伪迹。脑电信号的处理特征提取主要是提取出能表征脑电信号特征的一个或几个量。常用方法:时域分析法:方差分析、相关分析、峰值检测等频域分析法:功率谱估计——AR等时频分析法:小波变换等非线性分析:样本熵、最大Lyapunov指数和关联维数等其他方法:共同空间模式(CommonSpatialPattern,CSP),主成分分析(PrincipalComponentAnalysis,PCA),独立分量分析(IndependentComponentAnalysis,ICA)脑电信号的处理特征提取主要是提取出能表征脑电信号特征的一个或脑电信号的处理特征分类是把特征向量输入预先设计好的分类器中,进而识别出不同的脑电信号,并以逻辑控制信号来表示这些脑电信号。常用方法:线性判别式分析(LinearDisciminantAnalysis,LDA)人工神经网络(ArtificialNeuralNetwork,ANN)支持向量机(SupportVectorMachine,SVM)脑电信号的处理特征分类是把特征向量输入预先设计好的分类器中,连续小波变换连续小波变换连续小波变换连续小波变换离散小波变换离散小波变换机器人中的人机交互系统——脑机接口课件从尺度j看,j越大,分辨率就越低,频域分析差,时域分析好。只需平移较少次数的k就看计算完整段信号,即系数少。从尺度j看,j越大,分辨率就越低,频域分析差,时域分析好。多分辨率分析与Mallat算法1988年S.Mallat在构造正交小波基时,提出了多分辨率分析(Multi-ResolutionAnalysis,MRA)的概念,从空间的概念上形象地说明了小波的多分辨率特性,将此之前的所有正交小波基的构造法统一起来,给出了正交小波的构造方法以及正交小波变换的快速算法,即Mallat算法。多分辨率分析与Mallat算法1988年S.Mallat多分辨率分析多分辨率分析多分辨率分析由多分辨率分析构造基小波:由尺度函数推导基小波双尺度方程:多分辨率分析由多分辨率分析构造基小波:多分辨率分析多分辨率分析只是对信号低频部分进行进一步分解,而高频部分则不考虑。CA为逼近信号(低频部分),CD为细节信号(高频部分)

多分辨率分析多分辨率分析只是对信号低频部分进行进一步分解,而多分辨率分析多分辨率分析多分辨率分析多分辨率分析Mallat算法Mallat算法分解公式:分解公式:机器人中的人机交互系统——脑机接口课件重构公式重构公式小波变换的实现Matlab实现:调用库函数即可实现。(分解:wavedec;重构:waverec)C++实现:小波提升格式(DaubechiesIngrid,Sweldens.Factoringwavelettransformsintoliftingsteps.1996)小波变换的实现Matlab实现:调用库函数即可实现。(分小波对脑电信号的处理将信号进行小波分解时,分解的层数将视具体信号的有用成分和采样频率而定128Hz8~13Hz的α波14~30Hz的β波小波系数频带范围/Hz分解的层数D132~641D216~322D38~163A30~83小波对脑电信号的处理将信号进行小波分解时,分解的层数将视具体小波对脑电信号的处理小波对脑电信号的处理CSPCSPCSPCSPCSPCSPCSPCSPCSPCSPCSPCSPCSPCSPCSPCSP机器人中的人机交互系统脑机接口技术机器人中的人机交互系统脑机接口技术人机交互系统人机交互系统人机交互系统人机交互系统人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势人机交互系统的发展历史与趋势脑机接口(Brain-ComputerInterface,BCI)BCI是不依赖于大脑外周神经与肌肉系统,在人脑和计算机或外部设备之间建立起来的一种通信系统。它能够为重度残疾但思维意识正常的患者提供一种新型的对外信息交流手段。脑中风、脑部或者脊髓外伤、脑瘫、肌肉萎缩、多发性硬化、肌萎缩性脊髓侧索硬化(AmyotrophicLateralSclerosis,ALS)脑机接口(Brain-ComputerInterface,BCI的组成BCI的组成脑电信号(electroencephalograph,EEG)按频率和振幅的不同,脑电信号可分为δ波(0.5~3Hz)、θ波(4~7Hz)、α波(8~13Hz)和β波(14~30Hz)。非常微弱而且其背景噪声很强、非平稳、非线性脑电信号(electroencephalograph,EEGBCI的发展BCI的研究最早可以追溯到20世纪70年代,早期研究的目的是让受试者通过生物反馈训练学习如何自主地控制脑电节律。Nowis等人的研究结果表明,受试者通过训练后能够自主调节脑电的α波1995年,全世界从事有关脑机接口研究的小组不超过6个,1999年已超过20个,2002年则有近40个;到现在已经发展到数以百计,主要分布在美国、加拿大、欧洲、日本、中国等地区。美国和欧洲BCI技术发展的较早,日本、中国起步较晚。BCI的发展BCI的研究最早可以追溯到20世纪70年代,早期BCI的发展目前,关于BCI的应用在国内外也得到了飞速的发展,而在这些应用中主要应用到脑电信号:视觉诱发电位(VisualEvokedPotential,VEP)、μ节律和β波、α波、P300电位。使用这些信号的BCI系统通过检测大脑对视觉刺激、注视或注意的方向、运动意图、认知活动的响应可实现光标控制、字符输入和轮椅控制等简单的功能。基于VEP的BCI系统的应用。VEP又可以分为瞬态VEP(TransientVEP,TVEP)和稳态VEP(Steady-StateVEP,SSVEP)内清华大学,2004年开发的BCI系统,残疾人利用SSVEP控制电视和空调、拨打电话并启动语音播放。BCI的发展目前,关于BCI的应用在国内外也得到了飞速的发展BCI的发展基于μ节律和β波的BCI系统的应用2005年,Tanaka等就通过想象左臂和右臂运动实现了智能轮椅左转和右转基于α波的BCI系统的应用在1967年,Dewan就采用视觉集中去同步α波幅值来发送Morse电报码。通过快速简短地向上转动眼球,即一个α波幅值的简短增加,代表一个“●”;通过延长眼睛向上的时间,即一个延长时间的α波幅值增加,代表一个“-”;电码之间的空格,则用集中注意力产生α波的阻断来表示。BCI的发展基于μ节律和β波的BCI系统的应用BCI的发展基于P300电位的BCI系统的应用Donchin等人设计了基于P300的虚拟打字机P3Speller,一个6×6字符矩阵按行或列依次闪烁,行和列出现的次序是随机的,于是包含使用者想要输入字符的行或列的闪烁就是能够诱发出P300的靶刺激,通过检测P300所在的行和列就能确定使用者想要输入的字符。BCI的发展基于P300电位的BCI系统的应用机器人中的人机交互系统——脑机接口课件脑电信号的处理预处理主要用于去除脑电信号的伪迹。主要伪迹:眼动伪迹、眼电、肌电以及心电等伪迹,工频伪迹。主要方法:滤波脑电信号的处理预处理主要用于去除脑电信号的伪迹。脑电信号的处理特征提取主要是提取出能表征脑电信号特征的一个或几个量。常用方法:时域分析法:方差分析、相关分析、峰值检测等频域分析法:功率谱估计——AR等时频分析法:小波变换等非线性分析:样本熵、最大Lyapunov指数和关联维数等其他方法:共同空间模式(CommonSpatialPattern,CSP),主成分分析(PrincipalComponentAnalysis,PCA),独立分量分析(IndependentComponentAnalysis,ICA)脑电信号的处理特征提取主要是提取出能表征脑电信号特征的一个或脑电信号的处理特征分类是把特征向量输入预先设计好的分类器中,进而识别出不同的脑电信号,并以逻辑控制信号来表示这些脑电信号。常用方法:线性判别式分析(LinearDisciminantAnalysis,LDA)人工神经网络(ArtificialNeuralNetwork,ANN)支持向量机(SupportVectorMachine,SVM)脑电信号的处理特征分类是把特征向量输入预先设计好的分类器中,连续小波变换连续小波变换连续小波变换连续小波变换离散小波变换离散小波变换机器人中的人机交互系统——脑机接口课件从尺度j看,j越大,分辨率就越低,频域分析差,时域分析好。只需平移较少次数的k就看计算完整段信号,即系数少。从尺度j看,j越大,分辨率就越低,频域分析差,时域分析好。多分辨率分析与Mallat算法1988年S.Mallat在构造正交小波基时,提出了多分辨率分析(Multi-ResolutionAnalysis,MRA)的概念,从空间的概念上形象地说明了小波的多分辨率特性,将此之前的所有正交小波基的构造法统一起来,给出了正交小波的构造方法以及正交小波变换的快速算法,即Mallat算法。多分辨率分析与Mallat算法1988年S.Mallat多分辨率分析多分辨率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论