![螺旋桨叶剖面优化设计比较研究(英文)_第1页](http://file4.renrendoc.com/view/a436889eb8f1214beb4b963b104ef21d/a436889eb8f1214beb4b963b104ef21d1.gif)
![螺旋桨叶剖面优化设计比较研究(英文)_第2页](http://file4.renrendoc.com/view/a436889eb8f1214beb4b963b104ef21d/a436889eb8f1214beb4b963b104ef21d2.gif)
![螺旋桨叶剖面优化设计比较研究(英文)_第3页](http://file4.renrendoc.com/view/a436889eb8f1214beb4b963b104ef21d/a436889eb8f1214beb4b963b104ef21d3.gif)
![螺旋桨叶剖面优化设计比较研究(英文)_第4页](http://file4.renrendoc.com/view/a436889eb8f1214beb4b963b104ef21d/a436889eb8f1214beb4b963b104ef21d4.gif)
![螺旋桨叶剖面优化设计比较研究(英文)_第5页](http://file4.renrendoc.com/view/a436889eb8f1214beb4b963b104ef21d/a436889eb8f1214beb4b963b104ef21d5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
船舶力学
JournalofShipMechanicsArticleID:1007-7294(2011)12-1344-09AComparativeInvestigationonOptimizationof
PropellerBladeSectionDesignZENGZhi-bo(ChinaShipScientificResearchCenter,Wuxi214082,China)Abstract:Amethodofbladesectiondesignoptimizationformarinepropellerswithmaximumcavitationinceptionspeediscomparativelyinvestigated.Thedesignoptimizationmethodconsistsofthreeparts:parametricrepresentationofsections,cavitationbucketpredictionandGeneticAlgorithm(GA)usedtosearchtheoptimizedfoilsprovidingexcellentcavitationinceptionperformance.TheEpplermethod,whichdescribesaprofilebytenparameters,waseffectivelyutilizedforpropellerbladesectiondesignoptimizationformaximuminceptionspeed.BesidesdesignparametersinEpplermethod,parametricrepresentationofsectionscanbealsorealizedbycontrol[x)intsofB-splinecurve.Acomparativeinvestigationofbladesectiondesignoptimizationonthesetwoparametricrepresentationsispresented,someconclusionsaredrawn.Keywords:bladesectiondesignoptimization;geneticalgorithm;B-spline;Epplermethod;comparativeinvestigationCLCnumber:U661.313Documentcode:AIntroductionCavitationisakeysubjectofshippropellerdesign.Inmanycases,suchasfornavalships,ilisnecessarytodelaycavitationinceptionuptothehighestpossibleshipspeed.Traditionallythemarginagainstcavitationisincreasedbyincreasingthebladearea.However,itleadstothinandwidesections,whichreducestheabilityofcavitationfreewhenitoperatesatangleofattackwithtimedependentvaryingbecauseofnon-uniformwake.Furthermore,increasingbladeareareducespropellerefficiency.Forimprovingthecavitatingperformanceoffoilsection,Epplermethod"】wasprovedtobesignificantlysuccessfultoenlargecavitationbucketofsectionsandithadbeenverifiedbyexperiments121.Inrecentyears,morepracticaldesignmethodsofsectionsbasedonoptimizationhavebeendeveloped"』ZengandKuiper151developedanoptimizationtechnique,usingageneticalgorithmtointegratetheprogramofEppler-Shen,makesEpplerfoildesignmethodmoreaccessibleandconvenient.Inthispaper,theoptimizationtechnique151wasadoptedtocomparativelyinvestigateeffectsofdifferentparametricrepresentationsonoptimizedsectionsofpropeller.Twoparametricrepresentations:designparametersinEpplermethod,coordinatesofcontrolpointsofB-splineReceiveddate:2011-08-23Biography:ZENGZhi-bo(1980-),male,engineerofCSSRC.
curvewereinvestigated.Theoptimizationstrategyappliedgeneticalgorithmswhichwereprocessedbymeansofgeneticoperators,includingcrossover,mutationandselection.Theobjectivesderivefromacavitationbucketagainstanoperatingcurveofasectionofapropeller,whichconsistofpressuresheetcavitationmargin,suctionsheetcavitationmarginandsuctionbubblecavitationmargin.Theevaluationofthefitnessofobjectiveadoptedatwodimensionalpanelcode.Foraspecificoperatingcurveofabladesection,acomparativeinvestigationonthetwoparametricrepresentationsinoptimizationhasbeencarriedout.Theanalysiswaspresentedandsomeconclusionsweredrawn.Thegeometricaldifferencesamongtheoptimizedfoilsbasedontwoparametricrepresentationstellthatthesignificanceofeachparameterofeachrepresentationneedstobestudiedfurther.MethodologyMethodologyofsectiondesignoptimizationtodelaycavitationinceptionisgenerallycomposedofthreeparts:thefirstisparametricrepresentationofgeometryofsections,thesecondispredictionofcavitationbucketoffoilsandthethirdisoptimizationtool.Bladesectionparameterizationisadifficultprobleminoptimization,whichsignificantlyaffectsoptimizedresults.Anidealparametricrepresentationshouldbesimpleandcompletelyextractcharacteristicsofbladesectioninitsparametricspace.TwodimensionalpanelmethodisemployedtopredictthepressuredistributionandtheOptimiutionBoxOptimiutionBoxOptimiutionBoxParameterBoxFunctionBoxFig.lTheflowchartofsectiondesignoptimizationcavitationbucketonafoil.Cavitationbucketisdefinedbytheminimumpressureonthefoilversusangleofattackorliftcoefficient.SoafterthecalculationofthepressuredistributionsonafoilataseriesofOptimiutionBoxParameterBoxFunctionBoxFig.lTheflowchartofsectiondesignoptimizationTheoptimizationwasrealizedwithgeneticalgorithms,availableundertheiSIGHT9.0environment,aproductfromEngineousSoftware.Thesectiondesignoptimizationissetupbyintegratingaparametricrepresentation,atwodimensionalpanelmethodandanoptimizationtool.Fig.1showstheflowchart.ParametericrepresentationsAsmentionedabove,bladesectionparameterizationisaworthystudyingproblemrelatedtoaspecificoptimizationobject.Twomethodswereinvestigatedinthepresentstudy.B-splineLettingP(t)bethepositionvectoralongthecurveasafunctionoftheparameteraB-splinecurveisgivenby/l+lPU)二£bM(£)虹芦心皿,2WkWgl⑴i=lwherearethepositionvectorsofthen+1verticesofthecontrolpolygon,andNikarethenormalizedB-splinebasisfunctions.Differenttypesofcontrol'handles'areusedtoinfluencetheshapeofB-splinecurves,inwhichchanging/adjustingpositionofthecontrolpolygonverticesisthemostpracticalandsignificantone.Asanusualway,asectionofpropellerbladeisconsideredasasuperpositionofathicknessdistributionandacamberdistribution.Inordertomaketwocurvesreflectpossiblecharacteristicsofsectionsinoptimization,thecontrolpointsofB-splineshouldbeselectedreasonably.ThecontrolpointsforthicknessandcambercanbeselectedasinFig.2andFig.3,andthecoordinatesofthemareshowninTab.landTab.2.Thethicknessisrepresentedby9controlpointsand8parameterswithtwopointscorrespondingtotheleadingedgeandtrailingedgebeingfixed:(xt,ytvyt4,yfmax,yt5,yf6).Thecamberisrepresentedby8controlpointsand7parameters:(xf,yfi,泌,yfy)/薄,yf),Sothereare15parametersintotaltorepresentasectioninB-splineparametricrepresentationmethod.Fig.2ThecontrolpointstorepresentthicknessFig.3ThecontrolpointstorepresentcamberdistributiondistributionTab.lThecontrolpointscoordinatesforthicknessdistributionX00.0IxfOAxt0.25心0.5xzxt(\+2xt)/3(2+以)/31y0yhyhytAyGyt60Tab.2ThecontrolpointscoordinatesforcamberdistributionX00.0"0.15V0.25xf0.5xfxf0.5(1+矿)1y0yf\xfiyfi寸4yfgyfs0EpplermethodTheprogramofEppler-Shen[l)fordesigningasectioncanbeconsideredtodescribeasectionbytenparametersasfollows地巾i,a},a2.©3,ar巾妙a4,a5,u,k
when04Fig.4SegmentationofthesectiongeometryFig.4issegmentationofthesectiongeometryandshowsparametersoneachsegment.Inthefigure,from巾州to巾】isthemainpressureregionanda}isthecorrespondingangleofattackforconstantpressuredistributioninthisregion,where(f)PRisthelocationofthebeginningoftherecoveryandfixedat51degrees,whichisthesamevalueasusedbyKuiperandJessup161;From巾ito巾?,巾210巾3and</)3to(j)4arethesheetcavitationsuppressionregions,inwhich(f)2iscalculatedintheprogramanda29anda4arethecorrespondinganglesofattackintheseregions;a5correspondstotheregionfrom如to-</>5,inwhich如determinestheclosureregionatthetrailingedgeandfixedat24degrees;Thesuctionpressurerecoveryregionisonthesuctionsidefrom+(/>5to巾地;uandkareusedtocontrolthepressuredistributiononwhen04Fig.4SegmentationofthesectiongeometryComparativeinvestigationAcomparativeinvestigationontheeffectsoftwoparametricrepresentationmethods,i.e.B-splinemethod,andEpplermethodontheoptimizedresultsiscarriedout.Eachoptimizationhasitsownparametricrepresentationbutusingthesamepanelmethodforproducingcavitationbucketandthesameoptimizationtool.Anoperatingcurveofthesectionin0.8RofapropellerworkingbehindDTMB5415151wasadoptedasexampletofindtheobjectives.Fig.5givestheoperatingcurveandabucketof+a=0.8sectionwithamaximumthickness0.035NACA66mod+a=0.8sectionwithamaximumthickness0.035andthesectionisshowninFigs.13~15,itcanbeseenthatthebucketcannotenvelopetheoperatingcurve+a=0.8sectionwithamaximumthickness0.0354.1OptimizationproblemTheobjectiveoftheoptimizationistodesignasectionwithacavitationbucket,whichenvelopstheoperatingcurveinFig.6.Theoperatingcurvecanbecalculatedbyunsteadypanelcode.TheobjectiveconsistsofdClvdClHanddacThevaluedC”istheverticaldistancebetweenthecavitationbucketandthelowestpointoftheoperatingcurve,andgivesthemarginagainstpressuresidesheetcavitation.ThevaluedCLBistheverticaldistancebetweenthecavitationbucketandthehighestpointoftheoperatingcurve,andgivesthemarginagainstsuctionsidesheetcavitation.Similarlythevalueda(:comesfromtheminimumhorizontaldistancebetweentheoperatingcurveandthebucketanditdepictsthemarginagainstsuctionsidebubblecavitation.Theoptimizationproblemisformedwithaconstraintofmaximumthicknessoffoilsasfollows,Max.dCIA(X),dC^(X)9dcrc(X)XeC(2)whereXiscombinationofparameters,Cisaconstraintspaceofparameters,T临isthelimitofmaximumthicknessofsection.Therangeofeveryparameterineachparameterrepresentationmethodshouldbefirstlyspecified,whichhassomeeffectsonthedesignresults.TheconstraintofmaximumthicknessTIimissetas0.04.Inordertooptimizedesignvariablestheobjectivesaretranslatedintoonefitnessparameterwithsuitableweightforeachofthedesignobjectives.AGeneticAlgorithm(GA)optimizationmethodisusedtogenerateanewbetterpopulation.Optimizationsareprocessedbymeansofgeneticoperators,includingcrossover,mutationandselection.Thebestsolutionforamulti-objectiveoptimizationproblemisoftenatrade-off,soaParetooptimumisusedinsteadoffindingonlyonesolution.Thereisaseriesoffeasibleandnon-dominatedsolutionsintheParetoanddesignerscanselectasuitableoneaccordingtopracticalrequirements.ThedesignoptimizationisexecutediniSIGHT,thefeaturesofoptimizationtool,geneticalgorithm,areselectedasfollows:populationsizeis20,maximumgenerationsarespecifiedas25,crossovertypeistwopointsandcrossoverrateis0.4,mutationrateissetas0.1.Objectiveisdefinedas,Objective=-(WdCuxdC^+Wdc^^LB^c)⑶withtheweightofdC”,dclBofdCIRandofdac.SotheoptimizationbecomesaproblemsearchingminimumvalueofObjective.Inthepresentoptimizationproblem,(4)isselected.ComparisonontheoptimizationprocessTheoptimizationprocesseswiththetwoparametricrepresentationmethodsareshowninFig.7.ThefiguregivesthedevelopmentofbestObjectiveversusgenerations.ItcanbeseenthateachbestObjectiveisimprovedwiththeincreasingofgenerations,howevertheconvergenceissignificantlydifferent.Epplermethodcanarriveatminimumvalueafter5generationsbutB-splinemethodshowsagraduallyimprovedprocessandreachestheminimumObjective
in20generations.RegardingtheminimumObjective,B-sp]inemethodandEpplermethodhavethesamevaluewhichiscloseto-0.1.Fig.6AtypicaloperatingcurveandcavitationFig.6AtypicaloperatingcurveandcavitationFig.7ComparisonoftheoptimizationprocessbetweenbucketB-splinemethodandEpplermethod4.3ComparisonontheoptimizationresultTheParetodistributionisusedtodemonstratetheoptimizationdesignresultsinthemulti-objectiveproblem.Figs.8~9giverespectivelytheParetosineachmethod.TherearefourParetos:dC”anddac;dClAanddClB;dClBanddac\da(.andObjective.Inthesefigurestherearealltheindividualsineverygenerationduringtheprocessofoptimizationinwhichthedarkbluedotsarethefinaloptimumindividuals.ForObjectiveinthetwomethods,itcanbeseenfromthedarkdotsthatObjectiveisimprovedandtheminimumvaluesareinthesamelevel;Fordac,EpplermethodhasthehigherlevelthanB-splinemethodandthevalueinbothmethodsislargerthan0.FordClAanddCLBJtwomethodsgeneratevaluesdistributedonthebothsidesof0,andB-splinehaslargerrange.dCIAanddCIRhavetheobviouslycon-•CUraet«ri>ticPoiaU(A.B.0(WsifnedBvditt・・..4>.・.・•006-.♦•ooe-.•...•.Soot-♦••••.o1004-•■a002-002-3-00020040002DCLBDCLA004-.,006-•i.002-%.•.•也0-•••.•ow-•002-<11■F0050-002•1■0ObjectiveDCLA・・..4>.・.・•006-.♦•ooe-.•...•・・..4>.・.・•006-.♦•ooe-.•...•.Soot-♦••••.o1004-•■a002-002-3-00020040002DCLBDCLA004-.,006-•i.002-%.•.•也0-•••.•ow-•002-<11■F0050-002•1■0ObjectiveDCLAFig.8ThePareto:Thedistributionintheobjectivespaceofalltheindividuals(B-splinemethod)0901DCLB4*010DCLA092ow-••001-DSigmaCo«»—4__L-9.80006-g0-06・■085・C'*•oi-ooeQOtObjects■0010001DCLA002Fig.9ThePareto:Thedistributionintheobjectivespaceofalltheindividuals(Epplermethod)Inordertodistinguishthedifferencebetweenthesetwomethods,thecomparisonsonthethreecavitationmarginsinthreepracticalcasesweresinglycarriedout.TheresultsareshowninTab.3.Tab.3TheresultsofthecomparisonsdC”djBsplineEpplerBsplineEpplerBsplineEpplerBsplineEppler0.0080.0070.0130.0140.0650.0740.03350.03880.0130.0130.0190.0170.06150.07120.03330.03920.0180.0160.010.0090.0620.0740.03330.0393Case1:WhendCIAN0.007anddCLBN0.013,dacis0.065optimizedbyB-splinemethodand0.074byEpplermethod,whichshowsEpplermethodgives13.8%bettersuctionbubblecavitationmarginthanB-splinemethodduetoconstantpressuredistributiononthemainpressureregion.ThecomparisonofthetwobucketsweredepictedinFig.10.ThecorrespondingmaximumthicknessofEpplermethodis0.0388largerthanthatofB-splinemethod0.0335.0.)8o.0.080.060.040.02000.40.5a0.6Fig.10ThecomparisononsuctionbubblecavitationmarginCase2:WhendCIA20.013anddac0.06,B-splinemethodgeneratesdCLB=0.019andEpplermethodgeneratesdCIR=0.017whichisslightlylower.Fig.l10.)8o.0.080.060.040.02000.40.5a0.6Fig.10ThecomparisononsuctionbubblecavitationmarginFig.l1ThecomparisononsuctionsheetcavitationmarginFig.12ThecomparisononpressuresheetcavitationmarginCase3:WhendCIR>0.09andda0.06^dClAoptimizedbythetwomethodsarealsoverycloseandthebucketsareshowninFig.l1ThecomparisononsuctionsheetcavitationmarginFig.12ThecomparisononpressuresheetcavitationmarginInsummary,EpplermethodandB-splinemethodallcanoptimizesectionswithconsiderablebuckets.Epplermethodcanoptimizeasectionwithbetterbubblecavitationmargin,andslightlybettersheetcavitationmarginscanbeobtainedwithB-splinemethod.ThemaximumthicknessofB-splinemethodislessthanthatinEpplermethodThesectionsstructuredbyparametricrepresentationintheabovecasesareshowninFigs.13~15.ThemaximumthicknessofthemismovedtowardstheleadingedgeforincreasingthemarginagainstsheetcavitationandthemaximumcamberismovedtowardsthetrailingedgeformovingmoreloadstowardsthetrailingedgeincomparisonwiththeNACA66mod+a=0.8sectionalsoshowninthesefigures.o0.03>0.020.010.00-0.01-0.0290.03R0.020.010.00-0.01Fig.14Theoptimizedsections(Case2)-0.02Fig.15Theoptimizedsections(Case3)Thegeometricaldifferenceso0.03>0.020.010.00-0.01-0.0290.03R0.020.010.00-0.01Fig.14Theoptimizedsections(Case2)-0.02Fig.15Theoptimizedsections(Case3)ConclusionsAcomparativeinvestigationontheeffectsoftwoparametricrepresentationmethods:B-splinemethodandEpplermethodinthesectiondesignoptimizationmethodwascarriedout,someconclusionscanbedrawnasfollows:Thedesignoptimizationmethodwiththesetwoparametricrepresentationmethodscanallworkoutoptimumsections,andcanbe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45063-2024鞋类化学试验样品制备通则
- Prasugrel-hydroxy-thiolactone-生命科学试剂-MCE-3743
- 2-3-Dihydroxypropyl-pentadecanoate-生命科学试剂-MCE-1920
- 2025年度酒店客房客房设施设备维修承包经营与备件储备协议
- 2025年度二零二五年度玉米种植与农业观光旅游项目合作协议
- 二零二五年度汽车抵押贷款信用评级合同
- 二零二五年度张家界市别墅湖南商品房买卖合同
- 二零二五年度离婚协议书简易版(离婚后子女教育协议)
- 跨界合作小区内餐饮与其他行业的合作机会探索
- 个人房屋贷款抵押担保合同样本
- 宁夏“8·19”较大爆燃事故调查报告
- 中国高血压防治指南(2024年修订版)解读课件
- 2024年员工规章制度具体内容范本(三篇)
- 2024年浙江省中考科学试卷
- 初三科目综合模拟卷
- 2024年全国高考新课标卷物理真题(含答案)
- 劳动合同薪酬与绩效约定书
- 消除医疗歧视管理制度
- 柴油机油-标准
- 足疗店营销策划方案
- 学校安全一岗双责
评论
0/150
提交评论