工程力学教案 课件_第1页
工程力学教案 课件_第2页
工程力学教案 课件_第3页
工程力学教案 课件_第4页
工程力学教案 课件_第5页
已阅读5页,还剩123页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4章平面一般力系4.1力的平移定理4.2平面一般力系向作用面内一点简化4.3简化结果分析4.4平面一般力系的平衡条件及平衡方程4.5物体系统的平衡4.6考虑摩擦时的平衡问题1第4章平面一般力系4.1力的平移定理4.2平面一般4.1力的平移定理力的平移定理:作用于刚体上的力,可以平行地移动到刚体上任一指定点,为使该力对刚体的作用效果不变,必须同时附加一力偶,其力偶矩等于原力对该指定点的力矩。24.1力的平移定理力的平移定理:作用于刚体上的力,可以平行4.1力的平移定理力的平移定理的逆定理一个力平移的结果可得到同平面的一个力和一个力偶。反之同平面的一个力F和一个力偶矩为M的力偶也一定能合成为一个大小和方向与力F相同的力。其作用点到力作用线的距离为34.1力的平移定理力的平移定理的逆定理一个力平移的结果可得4.2平面一般力系向作用面内一点简化设在刚体上作用一平面一般力系F1

,F2

,…Fn各力作用点分别为A1

,

A2,…

An如图所示。在平面上任选一点O为简化中心。44.2平面一般力系向作用面内一点简化设在刚体上作用原力系转化为作用于O点的一个平面汇交力系F1,F2,

Fn以及相应的一个力偶矩分别为M1,M2,…Mn的附

加平面力偶系。根据力的平移定理,将各力平移到简化中心O。4.2平面一般力系向作用面内一点简化5原力系转化为作用于O点的一个平面汇交力系F1,F2F1=F1,

F2'=F2,…Fn'=FnM1=Mo(F1),M2=Mo(F2),…Mn=Mo(Fn)其中:4.2平面一般力系向作用面内一点简化6F1=F1,F2'=F2,…Fn'=FnM1=

一般情况下平面汇交力系F1',F2',…Fn'可合成为作用于O点的一个力,其力矢量R’称为原力系的主矢。FR'=F'i=Fi4.2平面一般力系向作用面内一点简化7一般情况下平面汇交力系F1',F2',…Fn'可合4.2平面一般力系向作用面内一点简化一般情况下附加平面力偶系可合成一个力偶,其力偶矩Mo

称为原力系对于简化中心O的主矩。Mo=Mi=Mo(Fi)

84.2平面一般力系向作用面内一点简化一般情况下附加平面力平面一般力系向其作用面内任一点简化,一般可以得到一个力和一个力偶,这个力作用线过简化中心,大小和方向等于该力系的主矢;这个力偶的力偶矩等于该力系对简化中心的主矩。结论4.2平面一般力系向作用面内一点简化

力系的主矢FR'只是原力系中各力的矢量和,所以它的大小和方向与简化中心的位置无关。

力系对于简化中心的主矩Mo,一般与简化中心的位置有关。9平面一般力系向其作用面内任一点简化,一般可以得到一个力和一个主矢的计算:Mo=Mo(Fi)

F/Rx=F/xi=FxiF/Ry=F/yi=Fyi主矩的计算:4.2平面一般力系向作用面内一点简化10主矢的计算:Mo=Mo(Fi)F/Rx=F固定端约束:既能限制物体移动又能限制物体转动的约束

当被固定端约束的物体所受的主动力是平面一般力系时,物体所受的约束反力也一定形成一个与主动力有关的平面一般力系。4.2平面一般力系向作用面内一点简化11固定端约束:既能限制物体移动又能限制物体转动的约束4.3简化结果分析(1)FR'

0,Mo

=0:FR'

=FioFR'

MOoFR'原力系简化为一个作用于简化中心O的合力FR'124.3简化结果分析(1)FR'0,Mo=原力系简化为一个力偶.此力偶即为原力系的合力偶,其力偶矩等于主矩Mo。Mo

=Mo(Fi)oFR'

MOo

MO(2)FR'=0,Mo

0:4.3简化结果分析13原力系简化为一个力偶.此力偶即为原力系的合力偶,Mo=oFRo1力系可以简化为一个合力FR,其大小和方向均与FR/相同,但是作用在另一点O1。即:

FR=FR'oFR'

MOd(2)FR'

0,Mo

0:根据力的平移定理的逆定理:4.3简化结果分析14oFRo1力系可以简化为一个合力FR,其大小和方向均与FR其作用线位置与简化中心点O的距离为:4.3简化结果分析Mo(FR)=FRd=Mo而Mo=Mo(Fi)Mo(FR)=Mo(Fi)OFR01d合力对O点的矩:xy(x,0)FRxFRyx15其作用线位置与简化中心点O的距离为:4.3简化结果分析M合力矩定理:

当平面一般力系简化为一个合力时,合力对力系所在平面内任一点的矩,等于力系中各力对同一点的矩的代数和。Mo(FR)=Mo(FRx)+Mo(FRy)=FRyx=Mo

4.3简化结果分析(4)FR=0,Mo

=0原力系为平衡力系,其简化

结果与简化中心的位置无关。16合力矩定理:当平面一般力系简化为一个合力四、平行分布的线荷载的简化均布线荷载非均布线荷载---三角形荷载4.3简化结果分析17四、平行分布的线荷载的简化均布线荷载非均布线荷载---三角形4.3简化结果分析沿同向分布的平行力系必然可以合成一个合力。它是分布荷载集度曲线与x轴围成的曲边梯形的面积。由合力矩定理,可以得到合力作用线位置合力作用线通过该曲边梯形的形心,方向同分布力方向。184.3简化结果分析沿同向分布的平行力系必然可以合成一个合力AabBql1、均布线荷载的简化FRCl/2合力大小:FR=ql合力作用线通过中心线AB的中点C4.3简化结果分析19AabBql1、均布线荷载的简化FRCl/2合力大小:FABbqml2、三角形荷载的简化:C2l/3FR合力大小:合力作用点C的位置:4.3简化结果分析20ABbqml2、三角形荷载的简化:C2l/3FR合力大例题1求图示力系合成的结果。xyF1(2,1)512βcosβ=12/13sinβ=5/13F2(-3,2)450MF3(0,-4)O4.3简化结果分析21例题1求图示力系合成的结果。xyF1(2,1)514.3简化结果分析解:1、取0点为简化中心,建立图示坐标系:主矢:FR/=Fi主矩:MA=mA(Fi)xyF1(2,1)512βcosβ=12/13sinβ=5/13F2(-3,2)450MF3(0,-4)OθF/R224.3简化结果分析解:1、取0点为简化中心,建立图示坐标系xyF1(2,1)512βcosβ=12/13sinβ=5/13F2(-3,2)450MF3(0,-4)O2、求力系的主矢θF/RF/Rx=FiX=F1cosβ-F2cos45o+F3

=70NF/Ry=Fiy=F1sinβ

+F2sin45o

=150N4.3简化结果分析23xyF1(2,1)512βcosβ=12/13sinβ=5/xyF1(2,1)512βcosβ=12/13sinβ=5/13F2(-3,2)450MF3(0,-4)OθF/R3、求力系的主矩MO=MO(Fi)=-F1cosβ×1+F1sinβ×2+F2cos450×2

-F2sin450×3+M+F3

×4=580N·m因为主矢、主矩均不为0,所以简化的最终结果为一个合力,此合力的大小和方向与主矢相同。F1xF1yF2yF2yMO4.3简化结果分析24xyF1(2,1)512βcosβ=12/13sinβ=5/xyF1(2,1)512βcosβ=12/13sinβ=5/13F2(-3,2)450MF3(0,-4)OθF/RF1XF1yF2xF2yMO4、求合力的作用线位置:所以简化的最终结果为一个合力FR。θFRXO14.3简化结果分析25xyF1(2,1)512βcosβ=12/13sinβ=5/4.4平面一般力系的平衡条件及平衡方程

一、平面一般力系的平衡条件

平面一般力系平衡的必要和充分条件是:力系的主矢和力系对任一点的主矩都等于零。FR'=0MO

=0二、平面一般力系的平衡方程=0=0主矩:Mo=Mo(Fi)264.4平面一般力系的平衡条件及平衡方程一、平面一般力(b)二矩式要求:投影轴x不能与矩心A和B的连线垂直。(c)三矩式要求:三个矩心A,B和C不在一直线上。MA(Fi)=0MB(Fi)=0Fx

=0MA(Fi)=0MB(Fi)=0MC(Fi)=0xABABC4.4平面一般力系的平衡条件及平衡方程(a)一矩式Fx=0Fy=0Mo(Fi)=027(b)二矩式要求:(c)三矩式要求:三个矩心A,B三、平面平行力系的平衡方程:F1FnFiF2Fx0Fy=0Mo(Fi)=0(a)一矩式AB(b)二矩式MA(Fi)=0MB(Fi)=0xyO4.4平面一般力系的平衡条件及平衡方程28三、平面平行力系的平衡方程:F1FnFiF2Fx1、审题,确定研究对象,取分离体,画受力图;2、适当选取投影轴和矩心或矩轴,列平衡方程;3、解平衡方程,得未知量。最好做到列一个方程,就能解出一个未知量。4.4平面一般力系的平衡条件及平衡方程四、平衡问题求解步骤291、审题,确定研究对象,取分离体,画受力图;2、适当选取投影l/2l/2ABCMP解:取水平梁AB为研究对象画受力图。l/2l/2ABCMPFAxFAyRB例在水平梁AB上作用一力偶矩为M

的力偶,在梁的中点C处作用一集中力P它与水平的夹角为,如图所示。梁长为l

且自重不计。求支座A和B的反力。4.4平面一般力系的平衡条件及平衡方程30l/2l/2ABCMP解:取水平梁AB为研究对l/2l/2ABCMPFAxFAyRBFAx-Pcos=0FAx=Pcos

MA(Fi)=0FAy-Psin+RA=0Fx=0Fy=0列平衡方程求解:dxy04.4平面一般力系的平衡条件及平衡方程31l/2l/2ABCMPFAxFAyRBFAx-P例:塔式起重机如图所示。设机身的重力为G1,载重的重力为G2,距离右轨的最大距离为L,平衡重物的重量为G3,求起重机满载和空载均不致翻倒时,平衡重物的重量G3所满足的条件。

G2G1CeabLG3AB4.4平面一般力系的平衡条件及平衡方程32例:塔式起重机如图所示。G2G1CeabLG3AB4.4G2G1CeabLFAFBG3AB解:取起重机为研究对象,画出受力图1、满载时,当重物距离右轨最远时,当起重机平衡时mB(F)=0-G1·e-G2·L-FA·b+G3·(a+b)=0FA=[-G1·e-G2·L+G3·(a+b)]/b起重机不翻倒的条件为:FA0G3(G1×e+G2×L)/(a+b)

4.4平面一般力系的平衡条件及平衡方程33G2G1CeabLFAFBG3AB解:取起重机为研究对象,画2、空载时,G2=0,当起重机平衡时:mA(F)=0

G3·a-G1·(b+e)+FB

·b=0FB=[-G3·a+G1·(b+e)]/b起重机不翻倒的条件为:FB0G3G1·(b+e)/a

(G1·e+G2·L)/(a+b)G3G1·(b+e)/a

所以,两种情况下起重机均不翻倒的条件为:G2G1CeabLFAFBG3AB4.4平面一般力系的平衡条件及平衡方程342、空载时,G2=0,当起重机平衡时:mA(F)=4.5物体系统的平衡当物体系统处于平衡时,其中的每一部分也一定处于平衡。因此,在解决物体系统的平衡时,既可选取整体为研究对象,也可选取其中的某部分为研究对象,然后列出相应的平衡方程以解出所需的未知量。物体系统是指由若干个物体通过适当的约束相互连接而组成的系统。内力:系统内各个物体之间的作用力。外力:系统外其它物体对系统内物体的作用力。内力不出现在整体的受力图中。354.5物体系统的平衡当物体系统处于平衡时,其中例:图示平面结构,由

悬臂刚架ABC和梁CD

铰接而成。已知

F=10kN,qB=6kN/m。

求A、C和

D的约束反力。CqBF1m2m2mAB2mD4.5物体系统的平衡36例:图示平面结构,由

悬臂刚架ABC和梁CD

铰接而成。已知CDqCFCxFCyFDFq1MC(Fi)=0FD=1KNFx=0Fcx=0Fy=0Fcy+FD-Fq1=0Fcy=2KN

解:(1)取梁CD为研究对象,受力分析:4.5物体系统的平衡37CDqCFCxFCyFDFq1MC(Fi)=0FD=1FAyFqFAxMAMA(Fi)=0MA=-8KN.mFx=0FAx-F=0Fy=0FAy+FD-Fq=0

FAy=11KN

(2)取整体为研究对象,受力分析:FAx=10KNFDADxy0BCqBF4.5物体系统的平衡38FAyFqFAxMAMA(Fi)=0MA=-8KN.m例:组合梁ABC的

支承与受力情况如

图所示。已知P=

30kN,Q=20kN,

=45o。求支座

A和C的约束力。2m2m2m2mPQABC4.5物体系统的平衡39例:组合梁ABC的

支承与受力情况如

图所示。已知P=2m2mQBCFBxFByRC解:1、取BC杆为研究对象画受力图。MB(Fi)=0-Q×2sin

+4RC

=0RC=7.07kNd4.5物体系统的平衡402m2mQBCFBxFByRC解:1、取BC杆为研究对象画2、取整体为研究对象画受力图2m2m2m2mPQABCMARCFAxFAy4.5物体系统的平衡Fx=0FAx-Qcos=0Fy=0FAy-P-Qsin

+RC=0

14.14kNFAx=Qcos=FAy=37.07kNMA(Fi)=0

MA-2×P-Q×6sin

+8RC=0

MA=31.72kN.m412、取整体为研究对象画受力图2m2m2m2mPQABCMA4.5物体系统的平衡构架尺寸如图所示。已知C为BD的中点,物重为G,各杆及滑轮的重量不计,铰链均为光滑,绳子不可伸长。试求A、B处的约束力及C处所受的力。424.5物体系统的平衡构架尺寸如图所示。已知C为BD的4.5物体系统的平衡解:(1)以BD为研究对象,受力如右图。434.5物体系统的平衡解:(1)以BD为研究对象,受力4.5物体系统的平衡(2)再以ACE杆为研究对象,受力如右图。444.5物体系统的平衡(2)再以ACE杆为研究对象,受解物体系统平衡问题的一般步骤:(a)分析系统由几个物体组成。(b)按照便于求解的原则,适当选取整体或部分为研究对象进行受力分析并画受力图。(c)列平衡方程并解出未知量。4.5物体系统的平衡45解物体系统平衡问题的一般步骤:(a)分析系统由几个物体组DCAB2m1m1m2m0.5mPqOq例:钢架ABC和梁CD,支承与荷载如图所示.已知P=5kN,q=200N/m,qO=300N/m.求支座A和B的反力.4.5物体系统的平衡46DCAB2m1m1m2m0.5mPqOq例:钢架ABC和梁C解:取整体为研究对象Xi=0XA-Q2=0XA=300NDCAB2m1m1m2m0.5mPqOqRDRBXAYAQ1=500N1.25mQ2=300N1.33m4.5物体系统的平衡47解:取整体为研究对象Xi=0XA-Q2=0XA取CD为研究对象MC(Fi)=0DPRDXCYC1m1mCP-2RD=0RD=2.5kN取整体为研究对象mA(Fi)=0-4.5RD+3.5P–2RB+1.25Q1+0.67Q2=0RB=3538NYi=0RD–P+RB-Q1+YA=0YA=-538N4.5物体系统的平衡48取CD为研究对象MC(Fi)=0DPRDXCYC1m1静定与静不定问题

对每一种力系而言,若未知量的数目等于独立平衡方程的数目。则应用刚体静力学的理论,就可以求得全部未知量,这样的问题称为静定问题。

若未知量的数目超过独立平衡方程的数目。则单独应用刚体静力学的理论,就不能求出全部未知量,这样的问题称为静不定问题。4.5物体系统的平衡49静定与静不定问题对每一种力系而言,若未知量的数目等于一、摩擦现象

摩擦是机械运动中一种普遍的现象。摩擦现象广泛地存在于日常生活中。1、滑动摩擦:两个物体接触面作相对滑动或具有相对滑动趋势时的摩擦。

动滑动摩擦----具有相对滑动静滑动摩擦----具有相对滑动趋势2、滚动摩擦:一个物体在另一个物体上滚动时的摩擦4.6考虑摩擦时的平衡问题50一、摩擦现象摩擦是机械运动中一种普遍的现象。1、滑动A二、滑动摩擦

当两个相互接触的物体有相对滑动或有相对滑动趋势时,在两个物体的接触面上就有阻碍它们做相对滑动的机械作用出现,这种机械作用称为滑动摩擦力,这种现象称为滑动摩擦。APT重量为P的物体放在粗糙的固定水平面上,受到一个水平拉力T的作用PTFNFFx

=0T-F=0F=T

F:静滑动摩擦力(静摩擦力)1、静滑动摩擦定律4.6考虑摩擦时的平衡问题51A二、滑动摩擦当两个相互接触的物体有相对滑动或有相对F

max临界平衡状态:FFmax:最大静摩擦力APTFNF

实验表明:F

max的大小与接触面上法向反力FN的

大小成正比,方向与物体相对滑动趋势的方向相反。静滑动摩擦定律f-----静摩擦系数F

max=f

FN

4.6考虑摩擦时的平衡问题52Fmax临界平衡状态:FFmax:最大静摩擦力APTFN2、动滑动摩擦定律F

=fFN

f

-----动摩擦系数

当两个相互接触的物体有相对滑动时,它们所受的摩擦力,称为动滑动摩擦力,简称动摩擦力。用F

表示。实验表明:f

<f4.6考虑摩擦时的平衡问题实验表明:动摩擦力F的大小与接触面上法向反力FN

的大小成正比,方向与物体相对滑动的方向相反。动滑动摩擦定律532、动滑动摩擦定律F=fFNf----三、摩擦角与自锁现象PTF法向反力FN和静摩擦力F的合力FR称为支承面对物体作用的约束全反力。FNFR:摩擦角1、摩擦角4.6考虑摩擦时的平衡问题54三、摩擦角与自锁现象PTF法向反力FN和静摩擦力F的合力FPTFmaxFNFR摩擦角是静摩擦力达到最大值时,全反力与支承面法线的夹角。2、自锁现象FNTFRFfmaxP(1)FRa与FR不可能共线,此时两力不符合二力平衡条件,物体将发生滑动。FRaFRFRa4.6考虑摩擦时的平衡问题55PTFmaxFNFR摩擦角是静摩擦力达到最大值时,2、自锁现α(2)

FRa与FR可能共线,物体将会处于平衡状态。FRaFR只要物体所受的主动力合力FRa的作用线在摩擦角的范围之内,即<m时,物体仅依靠摩擦总能静止而与主动力大小无关的现象,称为自锁。(3)=m,物体处于临界平衡状态GNFmax

FRαα<m4.6考虑摩擦时的平衡问题56α(2)FRa与FR可能共线,FRaFR只要物体所四、考虑滑动摩擦时物体的平衡问题考虑摩擦的平衡问题,应注意以下几点:

(1)静摩擦力的大小由平衡条件确定,同时应与最大静摩擦力比较.若F

Fmax

,则物体平衡;否则物体不平衡。

(2)在临界状态下,静摩擦力为最大值Fmax

,应满足关系式Fmax=f

FN。

(3)由于0F

F

max

,问题归结为求解平衡范围。一般设物体处于临界状态,此时F

=

F

max。

(4)当物体尚未达到临界状态时,静摩擦力的方向可以假定。当物体达到临界状态时,静摩擦力的方向与相对滑动趋势的方向相反。4.6考虑摩擦时的平衡问题57四、考虑滑动摩擦时物体的平衡问题考虑摩擦的平衡问题,应注意以αGFGFminFNFmaxα例:将重量为G的物块放在斜面上。已知物块与斜面的静摩擦系数为f,且斜面的倾角α>m。若用一水平力F使物体平衡,求该力所可能有的最大值和最小值。解:1、下滑的临界状态:对物块进行受力分析:4.6考虑摩擦时的平衡问题58αGFGFminFNFmaxα例:将重量为G的物块放在斜面上GFminFNFmaxαxyα平面汇交力系建立图示坐标系:列平衡方程:Fx

=0Fmax+Fmin

cosα-Gsinα=0(1)Fmax=fFN

(3)

Fy=

0FN-Fmin

sinα-Gcosα=0(2)

f=tan

m

(4)

联立以上四式,可得:Fmin=Gtan(α-m)

4.6考虑摩擦时的平衡问题59GFminFNFmaxαxyα平面汇交力系建立图示坐标系:列GFmaxFNFmaxαxyα2、上滑的临界状态:对物块进行受力分析:建立图示坐标系,列平衡方程:Fx

=0-Fmax+Fmax

cosα-Gsinα=0(1)Fmax=fFN

(3)

Fy=0FN-Fmax

sinα-Gcosα=0(2)

f=tan

m

(4)

4.6考虑摩擦时的平衡问题60GFmaxFNFmaxαxyα2、上滑的临界状态:对物块进行GFmaxFNFmaxαxyαFminGFNFmaxαxyαFmax=Gtan(α+m)

综合以上两种情况,为使物块平衡,则力F应满足:Fmin<F<Fmax即:Gtan(α-m)

<F<Gtan(α+m)4.6考虑摩擦时的平衡问题联立以上四式,可得:61GFmaxFNFmaxαxyαFminGFNFmaxαxyαBAGC例:梯子AB长为2a,重为W,梯子的下端A搁在水平地上,上端B靠在铅直墙上。设地面和墙与梯子间的摩擦角均为m

。求梯子平衡时,它与地面的夹角。4.6考虑摩擦时的平衡问题62BAGC例:梯子AB长为2a,重为W,梯子的下端A搁在NABAGCNBBGCAFAFB解一:选梯子为研究对象,受力分析:根据平面一般力系的平衡列平衡方程,然后结合静摩擦定律,可以求解。(略)4.6考虑摩擦时的平衡问题63NABAGCNBBGCAFAFB解一:选梯子为研究对象,mNABAGCNBBGCAFAmaxFBmaxRARBm+m900-(+m)Dm解二:假设梯子处于临界平衡状态,根据摩擦角的定义:4.6考虑摩擦时的平衡问题64mNABAGCNBBGCAFAmaxFBmaxRARB第4章平面一般力系4.1力的平移定理4.2平面一般力系向作用面内一点简化4.3简化结果分析4.4平面一般力系的平衡条件及平衡方程4.5物体系统的平衡4.6考虑摩擦时的平衡问题65第4章平面一般力系4.1力的平移定理4.2平面一般4.1力的平移定理力的平移定理:作用于刚体上的力,可以平行地移动到刚体上任一指定点,为使该力对刚体的作用效果不变,必须同时附加一力偶,其力偶矩等于原力对该指定点的力矩。664.1力的平移定理力的平移定理:作用于刚体上的力,可以平行4.1力的平移定理力的平移定理的逆定理一个力平移的结果可得到同平面的一个力和一个力偶。反之同平面的一个力F和一个力偶矩为M的力偶也一定能合成为一个大小和方向与力F相同的力。其作用点到力作用线的距离为674.1力的平移定理力的平移定理的逆定理一个力平移的结果可得4.2平面一般力系向作用面内一点简化设在刚体上作用一平面一般力系F1

,F2

,…Fn各力作用点分别为A1

,

A2,…

An如图所示。在平面上任选一点O为简化中心。684.2平面一般力系向作用面内一点简化设在刚体上作用原力系转化为作用于O点的一个平面汇交力系F1,F2,

Fn以及相应的一个力偶矩分别为M1,M2,…Mn的附

加平面力偶系。根据力的平移定理,将各力平移到简化中心O。4.2平面一般力系向作用面内一点简化69原力系转化为作用于O点的一个平面汇交力系F1,F2F1=F1,

F2'=F2,…Fn'=FnM1=Mo(F1),M2=Mo(F2),…Mn=Mo(Fn)其中:4.2平面一般力系向作用面内一点简化70F1=F1,F2'=F2,…Fn'=FnM1=

一般情况下平面汇交力系F1',F2',…Fn'可合成为作用于O点的一个力,其力矢量R’称为原力系的主矢。FR'=F'i=Fi4.2平面一般力系向作用面内一点简化71一般情况下平面汇交力系F1',F2',…Fn'可合4.2平面一般力系向作用面内一点简化一般情况下附加平面力偶系可合成一个力偶,其力偶矩Mo

称为原力系对于简化中心O的主矩。Mo=Mi=Mo(Fi)

724.2平面一般力系向作用面内一点简化一般情况下附加平面力平面一般力系向其作用面内任一点简化,一般可以得到一个力和一个力偶,这个力作用线过简化中心,大小和方向等于该力系的主矢;这个力偶的力偶矩等于该力系对简化中心的主矩。结论4.2平面一般力系向作用面内一点简化

力系的主矢FR'只是原力系中各力的矢量和,所以它的大小和方向与简化中心的位置无关。

力系对于简化中心的主矩Mo,一般与简化中心的位置有关。73平面一般力系向其作用面内任一点简化,一般可以得到一个力和一个主矢的计算:Mo=Mo(Fi)

F/Rx=F/xi=FxiF/Ry=F/yi=Fyi主矩的计算:4.2平面一般力系向作用面内一点简化74主矢的计算:Mo=Mo(Fi)F/Rx=F固定端约束:既能限制物体移动又能限制物体转动的约束

当被固定端约束的物体所受的主动力是平面一般力系时,物体所受的约束反力也一定形成一个与主动力有关的平面一般力系。4.2平面一般力系向作用面内一点简化75固定端约束:既能限制物体移动又能限制物体转动的约束4.3简化结果分析(1)FR'

0,Mo

=0:FR'

=FioFR'

MOoFR'原力系简化为一个作用于简化中心O的合力FR'764.3简化结果分析(1)FR'0,Mo=原力系简化为一个力偶.此力偶即为原力系的合力偶,其力偶矩等于主矩Mo。Mo

=Mo(Fi)oFR'

MOo

MO(2)FR'=0,Mo

0:4.3简化结果分析77原力系简化为一个力偶.此力偶即为原力系的合力偶,Mo=oFRo1力系可以简化为一个合力FR,其大小和方向均与FR/相同,但是作用在另一点O1。即:

FR=FR'oFR'

MOd(2)FR'

0,Mo

0:根据力的平移定理的逆定理:4.3简化结果分析78oFRo1力系可以简化为一个合力FR,其大小和方向均与FR其作用线位置与简化中心点O的距离为:4.3简化结果分析Mo(FR)=FRd=Mo而Mo=Mo(Fi)Mo(FR)=Mo(Fi)OFR01d合力对O点的矩:xy(x,0)FRxFRyx79其作用线位置与简化中心点O的距离为:4.3简化结果分析M合力矩定理:

当平面一般力系简化为一个合力时,合力对力系所在平面内任一点的矩,等于力系中各力对同一点的矩的代数和。Mo(FR)=Mo(FRx)+Mo(FRy)=FRyx=Mo

4.3简化结果分析(4)FR=0,Mo

=0原力系为平衡力系,其简化

结果与简化中心的位置无关。80合力矩定理:当平面一般力系简化为一个合力四、平行分布的线荷载的简化均布线荷载非均布线荷载---三角形荷载4.3简化结果分析81四、平行分布的线荷载的简化均布线荷载非均布线荷载---三角形4.3简化结果分析沿同向分布的平行力系必然可以合成一个合力。它是分布荷载集度曲线与x轴围成的曲边梯形的面积。由合力矩定理,可以得到合力作用线位置合力作用线通过该曲边梯形的形心,方向同分布力方向。824.3简化结果分析沿同向分布的平行力系必然可以合成一个合力AabBql1、均布线荷载的简化FRCl/2合力大小:FR=ql合力作用线通过中心线AB的中点C4.3简化结果分析83AabBql1、均布线荷载的简化FRCl/2合力大小:FABbqml2、三角形荷载的简化:C2l/3FR合力大小:合力作用点C的位置:4.3简化结果分析84ABbqml2、三角形荷载的简化:C2l/3FR合力大例题1求图示力系合成的结果。xyF1(2,1)512βcosβ=12/13sinβ=5/13F2(-3,2)450MF3(0,-4)O4.3简化结果分析85例题1求图示力系合成的结果。xyF1(2,1)514.3简化结果分析解:1、取0点为简化中心,建立图示坐标系:主矢:FR/=Fi主矩:MA=mA(Fi)xyF1(2,1)512βcosβ=12/13sinβ=5/13F2(-3,2)450MF3(0,-4)OθF/R864.3简化结果分析解:1、取0点为简化中心,建立图示坐标系xyF1(2,1)512βcosβ=12/13sinβ=5/13F2(-3,2)450MF3(0,-4)O2、求力系的主矢θF/RF/Rx=FiX=F1cosβ-F2cos45o+F3

=70NF/Ry=Fiy=F1sinβ

+F2sin45o

=150N4.3简化结果分析87xyF1(2,1)512βcosβ=12/13sinβ=5/xyF1(2,1)512βcosβ=12/13sinβ=5/13F2(-3,2)450MF3(0,-4)OθF/R3、求力系的主矩MO=MO(Fi)=-F1cosβ×1+F1sinβ×2+F2cos450×2

-F2sin450×3+M+F3

×4=580N·m因为主矢、主矩均不为0,所以简化的最终结果为一个合力,此合力的大小和方向与主矢相同。F1xF1yF2yF2yMO4.3简化结果分析88xyF1(2,1)512βcosβ=12/13sinβ=5/xyF1(2,1)512βcosβ=12/13sinβ=5/13F2(-3,2)450MF3(0,-4)OθF/RF1XF1yF2xF2yMO4、求合力的作用线位置:所以简化的最终结果为一个合力FR。θFRXO14.3简化结果分析89xyF1(2,1)512βcosβ=12/13sinβ=5/4.4平面一般力系的平衡条件及平衡方程

一、平面一般力系的平衡条件

平面一般力系平衡的必要和充分条件是:力系的主矢和力系对任一点的主矩都等于零。FR'=0MO

=0二、平面一般力系的平衡方程=0=0主矩:Mo=Mo(Fi)904.4平面一般力系的平衡条件及平衡方程一、平面一般力(b)二矩式要求:投影轴x不能与矩心A和B的连线垂直。(c)三矩式要求:三个矩心A,B和C不在一直线上。MA(Fi)=0MB(Fi)=0Fx

=0MA(Fi)=0MB(Fi)=0MC(Fi)=0xABABC4.4平面一般力系的平衡条件及平衡方程(a)一矩式Fx=0Fy=0Mo(Fi)=091(b)二矩式要求:(c)三矩式要求:三个矩心A,B三、平面平行力系的平衡方程:F1FnFiF2Fx0Fy=0Mo(Fi)=0(a)一矩式AB(b)二矩式MA(Fi)=0MB(Fi)=0xyO4.4平面一般力系的平衡条件及平衡方程92三、平面平行力系的平衡方程:F1FnFiF2Fx1、审题,确定研究对象,取分离体,画受力图;2、适当选取投影轴和矩心或矩轴,列平衡方程;3、解平衡方程,得未知量。最好做到列一个方程,就能解出一个未知量。4.4平面一般力系的平衡条件及平衡方程四、平衡问题求解步骤931、审题,确定研究对象,取分离体,画受力图;2、适当选取投影l/2l/2ABCMP解:取水平梁AB为研究对象画受力图。l/2l/2ABCMPFAxFAyRB例在水平梁AB上作用一力偶矩为M

的力偶,在梁的中点C处作用一集中力P它与水平的夹角为,如图所示。梁长为l

且自重不计。求支座A和B的反力。4.4平面一般力系的平衡条件及平衡方程94l/2l/2ABCMP解:取水平梁AB为研究对l/2l/2ABCMPFAxFAyRBFAx-Pcos=0FAx=Pcos

MA(Fi)=0FAy-Psin+RA=0Fx=0Fy=0列平衡方程求解:dxy04.4平面一般力系的平衡条件及平衡方程95l/2l/2ABCMPFAxFAyRBFAx-P例:塔式起重机如图所示。设机身的重力为G1,载重的重力为G2,距离右轨的最大距离为L,平衡重物的重量为G3,求起重机满载和空载均不致翻倒时,平衡重物的重量G3所满足的条件。

G2G1CeabLG3AB4.4平面一般力系的平衡条件及平衡方程96例:塔式起重机如图所示。G2G1CeabLG3AB4.4G2G1CeabLFAFBG3AB解:取起重机为研究对象,画出受力图1、满载时,当重物距离右轨最远时,当起重机平衡时mB(F)=0-G1·e-G2·L-FA·b+G3·(a+b)=0FA=[-G1·e-G2·L+G3·(a+b)]/b起重机不翻倒的条件为:FA0G3(G1×e+G2×L)/(a+b)

4.4平面一般力系的平衡条件及平衡方程97G2G1CeabLFAFBG3AB解:取起重机为研究对象,画2、空载时,G2=0,当起重机平衡时:mA(F)=0

G3·a-G1·(b+e)+FB

·b=0FB=[-G3·a+G1·(b+e)]/b起重机不翻倒的条件为:FB0G3G1·(b+e)/a

(G1·e+G2·L)/(a+b)G3G1·(b+e)/a

所以,两种情况下起重机均不翻倒的条件为:G2G1CeabLFAFBG3AB4.4平面一般力系的平衡条件及平衡方程982、空载时,G2=0,当起重机平衡时:mA(F)=4.5物体系统的平衡当物体系统处于平衡时,其中的每一部分也一定处于平衡。因此,在解决物体系统的平衡时,既可选取整体为研究对象,也可选取其中的某部分为研究对象,然后列出相应的平衡方程以解出所需的未知量。物体系统是指由若干个物体通过适当的约束相互连接而组成的系统。内力:系统内各个物体之间的作用力。外力:系统外其它物体对系统内物体的作用力。内力不出现在整体的受力图中。994.5物体系统的平衡当物体系统处于平衡时,其中例:图示平面结构,由

悬臂刚架ABC和梁CD

铰接而成。已知

F=10kN,qB=6kN/m。

求A、C和

D的约束反力。CqBF1m2m2mAB2mD4.5物体系统的平衡100例:图示平面结构,由

悬臂刚架ABC和梁CD

铰接而成。已知CDqCFCxFCyFDFq1MC(Fi)=0FD=1KNFx=0Fcx=0Fy=0Fcy+FD-Fq1=0Fcy=2KN

解:(1)取梁CD为研究对象,受力分析:4.5物体系统的平衡101CDqCFCxFCyFDFq1MC(Fi)=0FD=1FAyFqFAxMAMA(Fi)=0MA=-8KN.mFx=0FAx-F=0Fy=0FAy+FD-Fq=0

FAy=11KN

(2)取整体为研究对象,受力分析:FAx=10KNFDADxy0BCqBF4.5物体系统的平衡102FAyFqFAxMAMA(Fi)=0MA=-8KN.m例:组合梁ABC的

支承与受力情况如

图所示。已知P=

30kN,Q=20kN,

=45o。求支座

A和C的约束力。2m2m2m2mPQABC4.5物体系统的平衡103例:组合梁ABC的

支承与受力情况如

图所示。已知P=2m2mQBCFBxFByRC解:1、取BC杆为研究对象画受力图。MB(Fi)=0-Q×2sin

+4RC

=0RC=7.07kNd4.5物体系统的平衡1042m2mQBCFBxFByRC解:1、取BC杆为研究对象画2、取整体为研究对象画受力图2m2m2m2mPQABCMARCFAxFAy4.5物体系统的平衡Fx=0FAx-Qcos=0Fy=0FAy-P-Qsin

+RC=0

14.14kNFAx=Qcos=FAy=37.07kNMA(Fi)=0

MA-2×P-Q×6sin

+8RC=0

MA=31.72kN.m1052、取整体为研究对象画受力图2m2m2m2mPQABCMA4.5物体系统的平衡构架尺寸如图所示。已知C为BD的中点,物重为G,各杆及滑轮的重量不计,铰链均为光滑,绳子不可伸长。试求A、B处的约束力及C处所受的力。1064.5物体系统的平衡构架尺寸如图所示。已知C为BD的4.5物体系统的平衡解:(1)以BD为研究对象,受力如右图。1074.5物体系统的平衡解:(1)以BD为研究对象,受力4.5物体系统的平衡(2)再以ACE杆为研究对象,受力如右图。1084.5物体系统的平衡(2)再以ACE杆为研究对象,受解物体系统平衡问题的一般步骤:(a)分析系统由几个物体组成。(b)按照便于求解的原则,适当选取整体或部分为研究对象进行受力分析并画受力图。(c)列平衡方程并解出未知量。4.5物体系统的平衡109解物体系统平衡问题的一般步骤:(a)分析系统由几个物体组DCAB2m1m1m2m0.5mPqOq例:钢架ABC和梁CD,支承与荷载如图所示.已知P=5kN,q=200N/m,qO=300N/m.求支座A和B的反力.4.5物体系统的平衡110DCAB2m1m1m2m0.5mPqOq例:钢架ABC和梁C解:取整体为研究对象Xi=0XA-Q2=0XA=300NDCAB2m1m1m2m0.5mPqOqRDRBXAYAQ1=500N1.25mQ2=300N1.33m4.5物体系统的平衡111解:取整体为研究对象Xi=0XA-Q2=0XA取CD为研究对象MC(Fi)=0DPRDXCYC1m1mCP-2RD=0RD=2.5kN取整体为研究对象mA(Fi)=0-4.5RD+3.5P–2RB+1.25Q1+0.67Q2=0RB=3538NYi=0RD–P+RB-Q1+YA=0YA=-538N4.5物体系统的平衡112取CD为研究对象MC(Fi)=0DPRDXCYC1m1静定与静不定问题

对每一种力系而言,若未知量的数目等于独立平衡方程的数目。则应用刚体静力学的理论,就可以求得全部未知量,这样的问题称为静定问题。

若未知量的数目超过独立平衡方程的数目。则单独应用刚体静力学的理论,就不能求出全部未知量,这样的问题称为静不定问题。4.5物体系统的平衡113静定与静不定问题对每一种力系而言,若未知量的数目等于一、摩擦现象

摩擦是机械运动中一种普遍的现象。摩擦现象广泛地存在于日常生活中。1、滑动摩擦:两个物体接触面作相对滑动或具有相对滑动趋势时的摩擦。

动滑动摩擦----具有相对滑动静滑动摩擦----具有相对滑动趋势2、滚动摩擦:一个物体在另一个物体上滚动时的摩擦4.6考虑摩擦时的平衡问题114一、摩擦现象摩擦是机械运动中一种普遍的现象。1、滑动A二、滑动摩擦

当两个相互接触的物体有相对滑动或有相对滑动趋势时,在两个物体的接触面上就有阻碍它们做相对滑动的机械作用出现,这种机械作用称为滑动摩擦力,这种现象称为滑动摩擦。APT重量为P的物体放在粗糙的固定水平面上,受到一个水平拉力T的作用PTFNFFx

=0T-F=0F=T

F:静滑动摩擦力(静摩擦力)1、静滑动摩擦定律4.6考虑摩擦时的平衡问题115A二、滑动摩擦当两个相互接触的物体有相对滑动或有相对F

max临界平衡状态:FFmax:最大静摩擦力APTFNF

实验表明:F

max的大小与接触面上法向反力FN的

大小成正比,方向与物体相对滑动趋势的方向相反。静滑动摩擦定律f-----静摩擦系数F

max=f

FN

4.6考虑摩擦时的平衡问题116Fmax临界平衡状态:FFmax:最大静摩擦力APTFN2、动滑动摩擦定律F

=fFN

f

-----动摩擦系数

当两个相互接触的物体有相对滑动时,它们所受的摩擦力,称为动滑动摩擦力,简称动摩擦力。用F

表示。实验表明:f

<f4.6考虑摩擦时的平衡问题实验表明:动摩擦力F的大小与接触面上法向反力FN

的大小成正比,方向与物体相对滑动的方向相反。动滑动摩擦定律1172、动滑动摩擦定律F=f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论