平面的基本性质课件_第1页
平面的基本性质课件_第2页
平面的基本性质课件_第3页
平面的基本性质课件_第4页
平面的基本性质课件_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平面的基本性质共点共线共面平面的基本性质1知识回顾公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。公理3经过不在同一条直线上的三点,有且只有个平面推论1经过一条直线和这条直线外的一点,有且只有一个平面推论2经过两条相交直线,有且只有一个平面推论3经过两条平行直线,有且只有一个平面知识回顾2“共点”、“共线”、“共面”1、毯依据:(1)公理1:判断或证明直线是否在平面内(2)公理2:确定两个平面的交线,判定两平面相交(“点共线”,“线共(3)公理3,必2、3:确定平面证点、线共面的依据,也是作辅助面的依据2、反证法“共点”、“共线”、“共面”3点共面、线共面、三点共线、三线共点问题的一般方法其1.证明若干点或直线共面通常有两种思路(1)先由部分元素确定一个平面,再证明其余元素在这平面内(2)先由部分元素确定若干平面,再证明这些平面重合其2.证明三点共线,通常先确定经过两点的直线是某两个平面的交线,再证明第三点是这两个平面的公共点,即该点分别在这两个平面内其3.证明三线共点通常先证其中的两条直线相交于点,然后再证第三条直线经过这一点。点共面、线共面、三点共线、三线共点4例、两个平面两两相交,有三条交线,若其中两条相交于一点,证明第三条交线也过这一点证法:先证两条交线交于一点,再证第三条直线也过改点已知:如图1-26,∩β=a,βny=b,a∩y=c,bncp求证:p∈a证明:∵b∩c=p,∈bβ∩y=b,∴p∈β同理,p∈α图1又∵a∩β=a,p∈a例、两个平面两两相交,有三条交线,若其中两5例2、如图:在四面体ABCD中,EF分别是ABBc的中点,G,H分别在CD,AD上,且DG:DC=DH:DA=1:m(m>2)求证:直线EH与FGBD相交于一点P例2、如图:在四面体ABCD中,EF分别6例2、已知△ABC在平面a外,它的的三条边所在直线分别交平面a于P、Q、R求证:P、Q、R共线要证明各点共线,只要证明它们是两个平面的公共点A证明:P∈ABc平面ABCP∈平面ABCP∈a∴P∈a∩平面ABC同理Q、R也为公共点RC所以P、Q、R共线例2、已知△ABC在平面a外,它的的三条边所在73.已知:如图,D,E分别是△ABC的边AC,BC上的点平面C经过D,E两点(1)求直线AB与平面C的交点PA(2)求证:D,EP三点共线B3.已知:如图,D,E分别是△ABC的边AC,BC上的点8例1、已知四条直线两两相交,且不共点,求证这四条直线在同一平面内已知:直线a、b、c、d、两两相交,且不共点求证a、b、c、d在同一平面内分析:四条直线两两相交且不共点,可能有两种一是有三条直线共点二是没有三条直线共点,故证明要分两种情况例1、已知四条直线两两相交,且不共9(1)已知:d∩a=P,d∩b=Q.dc=R,a、bc相交于点O求证:a、b、c、d共面证明:‘d∩a=P∴过d、a确定一个平面a(推论2)图1-23同理过d、b和d、c各确定一个平面β、yO∈a,O∈b,O∈c∴O∈a,O∈β,O∈y.∴平面α、β、γ都经过直线d和d外一点O.a、β、γ重a、b、c、d共面.注:本题的方法是“同一法”(1)已知:d∩a=P,d∩b=Q.dc=R,a、b10平面的基本性质课件11平面的基本性质课件12平面的基本性质课件13平面的基本性质课件14平面的基本性质课件15平面的基本性质课件16平面的基本性质课件17平面的基本性质课件18平面的基本性质课件19平面的基本性质课件20平面的基本性质课件21平面的基本性质课件22平面的基本性质课件23平面的基本性质课件24平面的基本性质共点共线共面平面的基本性质25知识回顾公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。公理3经过不在同一条直线上的三点,有且只有个平面推论1经过一条直线和这条直线外的一点,有且只有一个平面推论2经过两条相交直线,有且只有一个平面推论3经过两条平行直线,有且只有一个平面知识回顾26“共点”、“共线”、“共面”1、毯依据:(1)公理1:判断或证明直线是否在平面内(2)公理2:确定两个平面的交线,判定两平面相交(“点共线”,“线共(3)公理3,必2、3:确定平面证点、线共面的依据,也是作辅助面的依据2、反证法“共点”、“共线”、“共面”27点共面、线共面、三点共线、三线共点问题的一般方法其1.证明若干点或直线共面通常有两种思路(1)先由部分元素确定一个平面,再证明其余元素在这平面内(2)先由部分元素确定若干平面,再证明这些平面重合其2.证明三点共线,通常先确定经过两点的直线是某两个平面的交线,再证明第三点是这两个平面的公共点,即该点分别在这两个平面内其3.证明三线共点通常先证其中的两条直线相交于点,然后再证第三条直线经过这一点。点共面、线共面、三点共线、三线共点28例、两个平面两两相交,有三条交线,若其中两条相交于一点,证明第三条交线也过这一点证法:先证两条交线交于一点,再证第三条直线也过改点已知:如图1-26,∩β=a,βny=b,a∩y=c,bncp求证:p∈a证明:∵b∩c=p,∈bβ∩y=b,∴p∈β同理,p∈α图1又∵a∩β=a,p∈a例、两个平面两两相交,有三条交线,若其中两29例2、如图:在四面体ABCD中,EF分别是ABBc的中点,G,H分别在CD,AD上,且DG:DC=DH:DA=1:m(m>2)求证:直线EH与FGBD相交于一点P例2、如图:在四面体ABCD中,EF分别30例2、已知△ABC在平面a外,它的的三条边所在直线分别交平面a于P、Q、R求证:P、Q、R共线要证明各点共线,只要证明它们是两个平面的公共点A证明:P∈ABc平面ABCP∈平面ABCP∈a∴P∈a∩平面ABC同理Q、R也为公共点RC所以P、Q、R共线例2、已知△ABC在平面a外,它的的三条边所在313.已知:如图,D,E分别是△ABC的边AC,BC上的点平面C经过D,E两点(1)求直线AB与平面C的交点PA(2)求证:D,EP三点共线B3.已知:如图,D,E分别是△ABC的边AC,BC上的点32例1、已知四条直线两两相交,且不共点,求证这四条直线在同一平面内已知:直线a、b、c、d、两两相交,且不共点求证a、b、c、d在同一平面内分析:四条直线两两相交且不共点,可能有两种一是有三条直线共点二是没有三条直线共点,故证明要分两种情况例1、已知四条直线两两相交,且不共33(1)已知:d∩a=P,d∩b=Q.dc=R,a、bc相交于点O求证:a、b、c、d共面证明:‘d∩a=P∴过d、a确定一个平面a(推论2)图1-23同理过d、b和d、c各确定一个平面β、yO∈a,O∈b,O∈c∴O∈a,O∈β,O∈y.∴平面α、β、γ都经过直线d和d外一点O.a、β、γ重a、b、c、d共面.注:本题的方法是“同一法”(1)已知:d∩a=P,d∩b=Q.dc=R,a、b34平面的基本性质课件35

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论