版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为()A.15m B.17m C.18m D.20m3.已知反比例函数,下列结论不正确的是()A.图象经过点(﹣2,1) B.图象在第二、四象限C.当x<0时,y随着x的增大而增大 D.当x>﹣1时,y>24.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,则其中结论正确的个数是() A、2个 B、3个 C、4个 D、5个5.如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是A. B.C. D.6.解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=17.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A. B. C. D.8.使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A. B. C. D.9.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A. B. C. D.10.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,Rt△ABC中,∠C=90°,AB=10,,则AC的长为_______.12.如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为__________.13.计算:2tan14.不等式组的解集是____________;15.分解因式:8x²-8xy+2y²=_________________________.16.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.三、解答题(共8题,共72分)17.(8分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:销售价格元千克2410市场需求量百千克12104已知按物价部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本18.(8分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.19.(8分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示分组频数4.0≤x<4.224.2≤x<4.434.4≤x<4.654.6≤x<4.884.8≤x<5.0175.0≤x<5.25(1)求活动所抽取的学生人数;(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.20.(8分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名.21.(8分)解方程:1+22.(10分)如图,在等边中,,点D是线段BC上的一动点,连接AD,过点D作,垂足为D,交射线AC与点设BD为xcm,CE为ycm.小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:通过取点、画图、测量,得到了x与y的几组值,如下表:012345___00说明:补全表格上相关数值保留一位小数建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_____cm.23.(12分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).24.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分∠DAB;(2)若BE=3,CE=3,求图中阴影部分的面积.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形2、C【解析】连结OA,如图所示:
∵CD⊥AB,
∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故选C.3、D【解析】
A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;
B选项:因为-2<0,图象在第二、四象限,故本选项正确;
C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;
D选项:当x>0时,y<0,故本选项错误.
故选D.4、B【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;
②根据图示知,该函数图象的开口向上,
∴a>0;
故②正确;
③又对称轴x=-=1,
∴<0,
∴b<0;
故本选项错误;
④该函数图象交于y轴的负半轴,
∴c<0;
故本选项错误;
⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.
所以①②⑤三项正确.
故选B.5、A【解析】
依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象.【详解】解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,
抛物线向上平移5个单位后可得:,即,
形成的图象是A选项.
故选A.【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答.6、D【解析】
先去分母解方程,再检验即可得出.【详解】方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解【点睛】本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验7、B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.8、C【解析】
根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.9、A【解析】
让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.
故选:A.【点睛】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.10、B【解析】
将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.【详解】解:,①②得:,即,将代入①得:,即,将,代入得:,解得:.故选:.【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.二、填空题(本大题共6个小题,每小题3分,共18分)11、8【解析】
在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.【详解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案为8.【点睛】此题主要考查锐角三角函数在直角三形中的应用及勾股定理.12、【解析】
根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得到四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据勾股定理可得答案.【详解】如图,在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴对称轴为x=1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),连结D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四边形EDFG周长的最小值是.【点睛】本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.13、3+3【解析】
本题涉及零指数幂、负指数幂、绝对值、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式=2×3+2﹣3+1,=23+2﹣3+1,=3+3.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数、绝对值等考点的运算14、﹣9<x≤﹣1【解析】
分别求出两个不等式的解集,再求其公共解集.【详解】,解不等式①,得:x≤-1,解不等式②,得:x>-9,所以不等式组的解集为:-9<x≤-1,故答案为:-9<x≤-1.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15、1【解析】
提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a1±1ab+b1=(a±b)1.【详解】8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1.故答案为:1(1x-y)1【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.16、m≥且m≠1.【解析】
根据一元二次方程的定义和判别式的意义得到m﹣1≠0且然后求出两个不等式的公共部分即可.【详解】解:根据题意得m﹣1≠0且解得且m≠1.故答案为:且m≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.三、解答题(共8题,共72分)17、(1);(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加.【解析】
(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)由题意可得:p≤q,进而得出x的取值范围;(3)①利用顶点式求出函数最值得出答案;②利用二次函数的增减性得出答案即可.【详解】(1)设q=kx+b(k,b为常数且k≠0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,∴q与x的函数关系式为:q=﹣x+14;(2)当产量小于或等于市场需求量时,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;(3)①当产量大于市场需求量时,可得4<x≤10,由题意得:厂家获得的利润是:y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;②∵当x时,y随x的增加而增加.又∵产量大于市场需求量时,有4<x≤10,∴当4<x时,厂家获得的利润y随销售价格x的上涨而增加.【点睛】本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键.18、(1)m<2;(2)m=1.【解析】
(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;
(2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值.【详解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有两个不相等的实数根,∴△>3.即﹣8m+2>3.解得m<2;(2)∵m<2,且m为非负整数,∴m=3或m=1,当m=3时,原方程为x2-2x-3=3,解得x1=3,x2=﹣1(不符合题意舍去),当m=1时,原方程为x2﹣2=3,解得x1=,x2=﹣,综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=3(a≠3)的根与△=b2-4ac有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.19、(1)所抽取的学生人数为40人(2)37.5%(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【解析】【分析】(1)求出频数之和即可;(2)根据合格率=合格人数÷总人数×100%即可得解;(3)从两个不同的角度分析即可,答案不唯一.【详解】(1)∵频数之和=3+6+7+9+10+5=40,∴所抽取的学生人数为40人;(2)活动前该校学生的视力达标率=×100%=37.5%;(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少;②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.20、(1)50名;(2)16名;见解析;(3)56名.【解析】试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案.试题解析:(1)10÷20%=50(名)答:本次抽样共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.补全图形如图所示:(3)700×(4÷50)=56(名)答:估计该中学八年级700名学生中体能测试为D等级的学生有56名.考点:统计图.21、无解.【解析】
两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x2﹣3x﹣x2=3x﹣18,解得:x=3,经检验x=3是增根,分式方程无解.【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.22、(1)1.1;(2)见解析;(3).【解析】
(1)(2)需要认真按题目要求测量,描点作图;(3)线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题.【详解】根据题意测量约故应填:根据题意画图:当线段BD是线段CE长的2倍时,得到图象,该图象与中图象的交点即为所求情况,测量得BD长约.故答案为(1)1.1;(2)见解析;(3)1.7.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同违约诉讼程序指导
- 微店供应商入驻服务协议2024年
- 工程分包合同模板及填写说明
- 专业技术开发委托合同模板
- 中小企业人力资源绩效管理优化路径探析6700字
- 青岛胶州市中学田径课余训练现状调查分析8000字
- 劳务工人安全生产协议书2024年
- 济南平阴县建筑公司实践总结报告2400字
- 银行贷款合同示例
- 汽车购买服务专项协议
- 辽宁省大连市金普新区2024-2025学年七年级上学期11月期中英语试题(无答案)
- 生态文明学习通超星期末考试答案章节答案2024年
- 区病案质控中心汇报
- 期中测试卷(1-4单元)(试题)2024-2025学年四年级上册数学人教版
- 教育局职业院校教师培训实施方案
- 《万维网服务大揭秘》课件 2024-2025学年人教版新教材初中信息技术七年级全一册
- 2024年新华社招聘应届毕业生及留学回国人员129人历年高频难、易错点500题模拟试题附带答案详解
- 人教版(2024新版)七年级上册英语Unit 5单元测试卷(含答案)
- 美食行业外卖平台配送效率提升方案
- 中国民用航空局信息中心招聘笔试题库2024
- 芯片设计基础知识题库100道及答案(完整版)
评论
0/150
提交评论