函数的基本性质练习题(精华)_第1页
函数的基本性质练习题(精华)_第2页
函数的基本性质练习题(精华)_第3页
函数的基本性质练习题(精华)_第4页
函数的基本性质练习题(精华)_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数的基本性质练习题(精华)函数的基本性质练习题(精华)函数的基本性质练习题(精华)资料仅供参考文件编号:2022年4月函数的基本性质练习题(精华)版本号:A修改号:1页次:1.0审核:批准:发布日期:高一数学------函数的基本性质一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。在进行集合间的运算时要注意使用Venn图。本章知识结构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。对象――即集合中的元素。集合是由它的元素唯一确定的。整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。确定的――集合元素的确定性――元素与集合的“从属”关系。不同的――集合元素的互异性。2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。我们理解起来并不困难。我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。几个常用数集N、N*、N+、Z、Q、R要记牢。3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3,…,100}③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。4、集合之间的关系●注意区分“从属”关系与“包含”关系“从属”关系是元素与集合之间的关系。“包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn图描述集合之间的关系是基本要求。●注意辨清Φ与{Φ}两种关系。5、集合的运算集合运算的过程,是一个创造新的集合的过程。在这里,我们学习了三种创造新集合的方式:交集、并集和补集。一方面,我们应该严格把握它们的运算规则。同时,我们还要掌握它们的运算性质:还要尝试利用Venn图解决相关问题。一、典型选择题1.在区间上为增函数的是(

)A.

B.C.

D.(考点:基本初等函数单调性)2.函数是单调函数时,的取值范围(

)A.

B.C.

D.(考点:二次函数单调性)3.如果偶函数在具有最大值,那么该函数在有(

)A.最大值

B.最小值C.没有最大值D.没有最小值(考点:函数最值)4.函数,是(

)A.偶函数B.奇函数

C.不具有奇偶函数D.与有关(考点:函数奇偶性)5.函数在和都是增函数,若,且那么(

)A.B.

C.

D.无法确定(考点:抽象函数单调性)6.函数在区间是增函数,则的递增区间是(

)A.

B.C.D.(考点:复合函数单调性)7.函数在实数集上是增函数,则(

)A.

B.

C.D.(考点:函数单调性)8.定义在R上的偶函数,满足,且在区间上为递增,则()A.

B.

C.

D.(考点:函数奇偶、单调性综合)9.已知在实数集上是减函数,若,则下列正确的是(

)A.B.C.D.(考点:抽象函数单调性)二、典型填空题1.函数在R上为奇函数,且,则当,

.(考点:利用函数奇偶性求解析式)2.函数,单调递减区间为

,最大值和最小值的情况为

.(考点:函数单调性,最值)三、典型解答题1.(12分)已知,求函数得单调递减区间.(考点:复合函数单调区间求法)2.(12分)已知,,求.(考点:函数奇偶性,数学整体代换的思想)3.(14分)在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。生产台的收入函数为(单位元),其成本函数为(单位元),利润的等于收入与成本之差.①求出利润函数及其边际利润函数;②求出的利润函数及其边际利润函数是否具有相同的最大值;③你认为本题中边际利润函数最大值的实际意义.(考点:函数解析式,二次函数最值)4.(14分)已知函数,且,,试问,是否存在实数,使得在上为减函数,并且在上为增函数.(考点:复合函数解析式,单调性定义法)参考答案一、BAABDBAAD二、1.;

2.和,;三、3.解:函数,,故函数的单调递减区间为.4.解:已知中为奇函数,即=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论