鸡兔同笼问题(教师版)_第1页
鸡兔同笼问题(教师版)_第2页
鸡兔同笼问题(教师版)_第3页
鸡兔同笼问题(教师版)_第4页
鸡兔同笼问题(教师版)_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鸡兔同笼问题(教师版)鸡兔同笼问题(教师版)鸡兔同笼问题(教师版)xxx公司鸡兔同笼问题(教师版)文件编号:文件日期:修订次数:第1.0次更改批准审核制定方案设计,管理制度鸡兔同笼问题(假设法)(第一讲)我国古代数学名著《孙子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何意思是说:鸡和兔同关在一个笼子里,已知鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只

这就是著名的鸡兔同笼问题。怎样解决这个问题呢?我们通常把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”,这种解决问题的方法就是假设法。鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置出来。解鸡兔同笼问题的基本关系式是:解法1:鸡的只数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔的只数=总只数-鸡的只数解法2:兔的只数=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)鸡的只数=总只数-兔的只数例1、鸡兔同笼,头共46,足共128,鸡兔各几只?

分析:假设46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚。如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚。那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了。所以,鸡的只数就是28,兔的只数是46-28=18。例2、小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。因此只要算出12里面有几个2,就可以求出兔的只数。解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。答:有6只兔,10只鸡。我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。因此只要算出20里面有几个2,就可以求出鸡的只数。有鸡(4×16-44)÷(4-2)=10(只),有兔16—10=6(只)。※、鸡、兔共有头100个,脚350只,鸡、兔各有多少只?

※、鸡兔同笼,共有头100个,足316只,那么鸡有多少只兔有多少只

※、鸡兔同笼,共有30个头,88只脚。笼子中鸡、兔各有多少只?

※、鸡与兔共40只,鸡的脚数与兔的脚数共有90只。问鸡、兔各多少只?

※、在同一个笼子中,有若干只鸡和兔,从笼子上看有40头,从笼子下数有130只脚,那么这个笼子中装有兔、鸡各多少只?

※、动物园里有一群鸵鸟和长颈鹿,它们共有30只眼睛和44只脚,问鸵鸟和长颈鹿各有多少只?

※、现在有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大、小油桶各多少个

※、大油瓶一瓶装4千克,小油瓶2瓶装1千克。现有100千克油装了共60个瓶子.问大、小油瓶各多少个?

※、面值为5角和8角的邮票共30张,总价值18元,那么面值为5角的邮票有多少张。※、30枚硬币,由2角和5角组成,共值9元9角,2角硬币有多少个?5角有多少个?※、某人领得工资240元,有2元,5元,10元三种人民币共50张,其中2元和5元的张数一样多,那么10元的有多少张

※、买一些4分与8分的邮票共花6元8角,已知8分的邮票比4分的多40张,那么8分的邮票有多少张

※、小华买了2元和5元的纪念邮票一共34枚,用去98元钱。小华买了2元和5元的纪念邮票各多少枚?

※、四(6)班42个同学向2008年北京奥运会捐款。其中12人每人捐2元,其余同学每人捐5元或10元,一共捐了229元。求捐5元和10元的同学各有多少人?

※、小强爱好集邮,他用1元钱买了4分和8分的两种邮票,共20张.那么他买了4分邮票多少张?

鸡兔同笼问题(假设法)(第二讲)例3、100个和尚140个馍,大和尚1人吃3个馍,小和尚1人吃1个馍。问:大、小和尚各有多少人?分析:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。同样,也可以假设100人都是小和尚。※、100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个小和尚有多少个

例4、乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?

分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。答:共打破3只花瓶。※、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元。结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?

※、运输队为商店运送花瓶500箱,每箱6个花瓶,已知每10个花瓶的运费5.5元,损坏一个花瓶要赔偿成本11.5元(这个花瓶的运费当然也得不到了)。结果这个运输队共得到运费1553.6元。问共损坏了多少个花瓶?

※、工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少只

※、灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?

※、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。运后运费为8880元,损失了几箱?

例题5、某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。共有12道题,王刚得了84分。王刚做错了几题?

思路导航:假设全做对,应得9×12=108分,现在少了108-84=24分。而做错一题,不但得不到9分,反而需要倒扣3分,相差了12分,所以错了24÷12=2题。※、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。小华参加了这次竞赛,得了64分。问:小华做对几道题?

※、某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分。小华得了76分,问他做对几题?

※、《希望月报》编辑部组织了一次“迎奥运,爱我中华”知识抢答竞赛,比赛规定:每位参赛选手起点都为100分,之后每答对一题加10分,每答错一题倒扣8分。小音抢答了12道题,最后得分148分,请问小音答对了多少题?

※、一次数学竞赛共20道题,每答对一道题得6分,每答错一道题倒扣4分。小明答完了全部的题目却得了零分,那么他一共答错了多少道题?

※、振兴小学六年级举行数学竞赛,共有20道试题。做对一题得5分,没做或做错一题都要扣3分。小建得了60分,那么他做对了几道题?

※、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。问小毛做对几道题

※、开心辞典智力竞赛中,开心队抢答了10道题,如果以100分开始算分,答对一题加10分,答错一题减10分,最后开心队得了140分,开心队答错了几题?

※、一张数学试卷,共有25道选择题,做对一题得4分,做错一题扣1分。如不做,不得分也不扣分。若某同学得了78分,那么,他做对了多少题做错多少题不做多少题※、某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?

※、有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?

鸡兔同笼问题(假设法)(第三讲)例6、刘老师带了41名同学去北海公园划船,共租了10条船,每条大船坐6人,每条小船坐4人,问大船、小船各租几条?

分析:假设租的10条船都是大船,那么船上应该坐6×10=60(人)。假设后的总人数比实际人数多了60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。※、三年级老师和同学223人去春游,共乘8辆车,其中每辆大巴坐35人,中巴坐16人。问大巴、中巴各多少辆?

※、全班46人去划船,共乘12条船。其中大船每船坐5人,小船每船坐3人。问大、小船各有几条?

※、某校现有12间宿舍,住着80个学生(正好住满)。宿舍的大小有三种:大号房间住8个学生,中号房间住7个学生,小号房间住5个学生。其中中号房间的宿舍最多,问中号房间的宿舍有几间?

例7、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?

分析:假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304-280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19-11=8(元),所以买普通文化用品24÷8=3(套),买彩色文化用品16-3=13(套)。※、小蕾花40元钱买了14张贺年卡与明信片。贺年卡每张3元5角,明信片每张2元5角。问:贺年卡、明信片各买了几张?

※、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元。问红、蓝铅笔各买几支?

※、学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?

※、某玩具店新购进飞机和汽车模型30个,其中飞机模型每个有3个轮子,汽车模型每个有4个轮子,这些玩具模型车共有110个轮子,那么新购进的飞机模型有多少辆?

※、在一个停车场上,停放的车辆(汽车和三轮摩托车)总数恰好是24。其中每辆汽车有4个轮子,每辆摩托车有3个轮子。这些车共有86个轮子。那么,三轮摩托车有多少辆?

※、100名学生参加社会实践,高年级学生2人一组,低年级学生3人一组,共有41组。高、低年级学生各有多少人?

※、老师和学生一共44人参加义务植树活动。老师每人植5棵,学生每人植2棵,正好一共植了100棵。参加植树的老师和学生各有多少人?

※、滨湖小学的教师和学生共100人去植树。教师每人栽3棵树,学生平均每3个人栽一棵树,一共栽100棵,问教师和学生各有多少人?

※、有钢笔和铅笔共27盒,共计300支。钢笔每盒10支,铅笔每盒12支,则钢笔有多少盒,铅笔有多少盒

※、松鼠妈妈采松球,晴天每天可以采20个,雨天每天只能采12个,它一连几天才了112个松球,平均每天14个。问这些天当中有几天是雨天?

※、松鼠妈妈采松子,晴天每天可采16个,雨天每天可采11个,一连采了若干天,有晴天,也有雨天,其中雨天比晴天多3天,但采的个数却比晴天采的个数少27个,问一共采了多少天?

※、学校购买每支价格为4角和8角两种铅笔。共花了68元。已知8角一支的铅笔比4角一支的铅笔多40支,那么,两种铅笔各买了多少支?

※、学生买回4个篮球5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是多少元?

※、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?

鸡兔同笼问题(假设法)(第四讲)例8、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?

分析:这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿。因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为6×18=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛。这样剩下的18-5=13(只)便是蜻蜓和蝉的只数,再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).※、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有三种小虫共36只,有236条腿和40对翅膀。问:每种小虫各有几只?

※、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?

※、王老师用了117元买了18本书,其中科技书和故事书共17本,字典一本(一本字典17元)。已知科技书每本8元,故事书每本4元。问科技书、故事书各买了多少本?

※、某工厂共有27位师傅带40名徒弟。每位师傅可以带一名徒弟、两名徒弟或三名徒弟。如果带一名徒弟的师傅人数是其他师傅(即带两名和三名徒弟的师傅)人数的两倍,请问带两名徒弟的师傅有多少人?

※、甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?

例9、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?

分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡车能装144÷9=16(吨)。由此可求出这批钢材有多少吨。解:4×36÷(45-36)×45=720(吨)。答:这批钢材有720吨。※、有一批水果,用大筐80只可装运完,用小筐120只也可装运完。已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?

※、某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多多少人

※、自行车越野赛全程220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?

例10、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?

分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×(2+3)=60(下)。可求出小乐每分钟跳(780-60)÷(2+3+3)=90(下),小乐一共跳了90×3=270(下),因此小喜比小乐共多跳780-270×2=240(下)。※、甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。现由甲工程队先修3天,余下的路段由甲、乙两队合修,正好花6天时间修完。问:甲、乙两个工程队每天各修路多少米?

※、古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字。有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?

※、小宇去游山,他从东坡上山,每小时行2千米,到山顶上玩1个小时,又从西坡下山,每小时行3千米,全程共行19千米,共用9小时,求上山、下山的路各几千米?

鸡兔同笼问题(假设法)(第五讲)例11、鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?

分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200-20=180(只)。现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100-30=70(只)。解:有兔(2×100-20)÷(2+4)=30(只),有鸡100-30=70(只)。※、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

※、龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?

※、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

例12、鸡兔共200只,鸡的脚比兔的脚少56只,则鸡有几只,兔有几只?

分析:如果200只都是兔,兔脚:200×4=800只,鸡脚:0只,鸡脚比兔脚少:800只,把1只兔换成鸡,兔脚减少4只,鸡脚增加2只,鸡脚与兔脚的差,减少:4+2=6只,一共需要减少:800-56=744只,鸡:744÷6=124只,兔:200-124=76只。※、鸡与兔共100只,鸡的脚数比兔的脚数少28。问鸡与兔各几只?

※、在一棵松树上有百灵鸟和松鼠共15只,松鼠比百灵鸟少24条腿,百灵鸟和松鼠各有多少只?

例13、鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?

思路:因为鸡比兔多30只,则可以把30只鸡的脚从总数中去掉,剩下的鸡兔就同样多了。每一对鸡和兔共4+2=6只脚,用6去除剩下的鸡兔总脚数,就可求出兔的只数。兔的只数:(168-2×30)÷(4+2)=18只;鸡的只数:18+30=48只。※、鸡兔共笼,鸡比兔多25只,一共有脚170只。鸡、兔各几只?

※、鸡、兔同笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?

※、鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有多少只,鸡有多少只

例14、水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。原来水果糖有几块?

思路:水果糖的块数是巧克力糖的3倍,如果小红每天吃1块巧克力糖,3块水果糖,几天后,两种糖同时吃完。现在小红每天吃2块水果糖,少吃3-2=1块,若干天后水果糖还剩下7块。所以共吃了7÷(3-2)=7天,水果糖有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论