版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.给出下列一组数:,,,,,其中无理数的个数为()A.0 B.1 C.2 D.32.如图,是等腰直角三角形,且,轴,点在函数的图象上,若,则的值为()
A. B. C. D.3.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为()A.20米 B.30米 C.16米 D.15米4.某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为,,则产量稳定,适合推广的品种为:()A.甲、乙均可 B.甲 C.乙 D.无法确定5.下列说法正确的是()A.“概率为1.1111的事件”是不可能事件B.任意掷一枚质地均匀的硬币11次,正面向上的一定是5次C.“任意画出一个等边三角形,它是轴对称图形”是随机事件D.“任意画出一个平行四边行,它是中心对称图形”是必然事件6.下列标志中既是轴对称图形又是中心对称图形的是()A. B.C. D.7.若反比例函数的图象过点A(5,3),则下面各点也在该反比例函数图象上的是()A.(5,-3) B.(-5,3) C.(2,6) D.(3,5)8.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.“概率为1的事件”是必然事件9.如图,、、是小正方形的顶点,且每个小正方形的边长为1,则的值为()A. B.1 C. D.10.正三角形外接圆面积是,其内切圆面积是()A. B. C. D.11.关于抛物线y=3(x-1)2+2,下列说法错误的是()A.开口方向向上 B.对称轴是直线x=lC.顶点坐标为(1,2) D.当x>1时,y随x的增大而减小12.下列事件中是随机事件的个数是()①投掷一枚硬币,正面朝上;②五边形的内角和是540°;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;④一个图形平移后与原来的图形不全等.A.0 B.1 C.2 D.3二、填空题(每题4分,共24分)13.如图,⊙O是等边△ABC的外接圆,弦CP交AB于点D,已知∠ADP=75°,则∠POB等于_______°.14.若△ABC∽△A′B′C′,且=,△ABC的周长为12cm,则△A′B′C′的周长为_______cm.15.将抛物线向左平移个单位,得到新的解析式为________.16.点在线段上,且.设,则__________.17.抛物线向右平移个单位,向上平移1个单位长度得到的抛物线解析式是_____18.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的有________.(填序号)①小红的运动路程比小兰的长;②两人分别在1.09秒和7.49秒的时刻相遇;③当小红运动到点D的时候,小兰已经经过了点D;④在4.84秒时,两人的距离正好等于⊙O的半径.三、解答题(共78分)19.(8分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20.(8分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degreeofsurprise),记作.(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标,点坐标,惊喜四边形属于所学过的哪种特殊平行四边形?,为.(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.21.(8分)如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP是等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?22.(10分)如图,在中,,于点,于点.(1)求证:;(2)若,求四边形的面积.23.(10分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回,搅匀,大量重复该实验,发现摸到绿球的频率稳定于0.2,求n的值;(2)若,小明两次摸球(摸出一球后,不放回,再摸出一球),请用树状图画出小明摸球的所有结果,并求出两次摸出不同颜色球的概率.24.(10分)已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.(1)求m的取值范围;(2)若点A、B位于原点的两侧,求m的取值范围.25.(12分)自2020年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线表示.(1)________;(2)求图1表示的售价与时间的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?26.小明准备进行如下操作实验:把一根长为的铁丝剪成两段,并把每一段围成一个正方形.(1)要使这两个正方形的面积之和等于,小明该怎么剪?(2)小刚对小明说:“这两个正方形的面积之和不可能等于.”小刚的说法对吗?请说明理由.
参考答案一、选择题(每题4分,共48分)1、C【分析】直接利用无理数的定义分析得出答案.【详解】解:,,,,,其中无理数为,,共2个数.故选C.【点睛】此题考查无理数,正确把握无理数的定义是解题关键.2、B【分析】根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的值,本题得以解决.【详解】解:∵三角形ABC是等腰直角三角形,∠ABC=90°,CA⊥x轴,AB=1,
∴∠BAC=∠BAO=45°,
∴OA=OB=∴点C的坐标为∵点C在函数(x>0)的图象上,∴k==1.故选:B.【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.3、B【分析】设此时高为18米的旗杆的影长为xm,利用“在同一时刻物高与影长的比相等”列出比例式,进而即可求解.【详解】设此时高为18米的旗杆的影长为xm,根据题意得:=,解得:x=30,∴此时高为18米的旗杆的影长为30m.故选:B.【点睛】本题考查了相似三角形的应用,掌握相似三角形的性质和“在同一时刻物高与影长的比相等”的原理,是解题的关键.4、B【解析】试题分析:这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定,因此可知推广的品种为甲.答案为B考点:方差5、D【分析】根据不可能事件、随机事件、以及必然事件的定义(即根据事件发生的可能性大小)逐项判断即可.【详解】在一定条件下,不可能发生的事件叫不可能事件;一定会发生的事件叫必然事件;可能发生也可能不发生的事件叫随机事件A、“概率为的事件”是随机事件,此项错误B、任意掷一枚质地均匀的硬币11次,正面向上的不一定是5次,此项错误C、“任意画出一个等边三角形,它是轴对称图形”是必然事件,此项错误D、“任意画出一个平行四边行,它是中心对称图形”是必然事件,此项正确故选:D.【点睛】本题考查了不可能事件、随机事件、以及必然事件的定义,掌握理解相关定义是解题关键.6、C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,也不是中心对称图形.故错误;
C、是轴对称图形,也是中心对称图形.故正确;
D、是轴对称图形,不是中心对称图形.故错误.
故选:C.【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、D【解析】先利用待定系数法求出反比例函数的解析式,然后将各选项的点代入验证即可.【详解】将点代入得:,解得则反比例函数为:A、令,代入得,此项不符题意B、令,代入得,此项不符题意C、令,代入得,此项不符题意D、令,代入得,此项符合题意故选:D.【点睛】本题考查了待定系数法求函数解析式、以及确定某点是否在函数上,依据题意求出反比例函数解析式是解题关键.8、D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为.故C错误;D.“概率为1的事件”是必然事件,正确.故选D.9、C【分析】连接BC,AB=,BC=,AC=,得到△ABC是直角三角形,从而求解.【详解】解:连接BC,由勾股定理可得:AB=,BC=,AC=,∵∴△ABC是直角三角形,∴故选:C.【点睛】本题考查直角三角形,勾股定理;熟练掌握在方格中利用勾股定理求边长,同时判断三角形形状是解题的关键.10、D【分析】△ABC为等边三角形,利用外接圆和内切圆的性质得∠OBC=30°,在Rt△OBD中,利用含30°的直角三角形三边的关系得到OD=OB,然后根据圆的面积公式得到△ABC的外接圆的面积与其内切圆的面积之比,即可得解.【详解】△ABC为等边三角形,AD为角平分线,⊙O为△ABC的内切圆,连OB,如图所示:∵△ABC为等边三角形,⊙O为△ABC的内切圆,∴点O为△ABC的外心,AD⊥BC,∴∠OBC=30°,在Rt△OBD中,OD=OB,∴△ABC的外接圆的面积与其内切圆的面积之比=OB2:OD2=4:1.∵正三角形外接圆面积是,∴其内切圆面积是故选:D.【点睛】本题考查了正多边形与圆:正多边有内切圆和外接圆,并且它们是同心圆.也考查了等边三角形的性质.11、D【分析】开口方向由a决定,看a是否大于0,由于抛物线为顶点式,可直接确定对称轴与顶点对照即可,由于抛物线开口向上,在对称轴左侧函数值随x的增大而减小,在对称轴右侧y随x的增大而增大即可.【详解】关于抛物线y=3(x-1)2+2,a=3>0,抛物线开口向上,A正确,x=1是对称轴,B正确,抛物线的顶点坐标是(1,2),C正确,由于抛物线开口向上,x<1,函数值随x的增大而减小,x>1时,y随x的增大而增大,D不正确.故选:D.【点睛】本题考查抛物线的性质问题,由具体抛物线的顶点式抓住有用信息,会用二次项系数确定开口方向与大小,会求对称轴,会写顶点坐标,会利用对称轴把函数的增减性一分为二,还要结合a确定增减问题.12、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】①掷一枚硬币正面朝上是随机事件;②五边形的内角和是540°是必然事件;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品是随机事件;④一个图形平移后与原来的图形不全等是不可能事件;则是随机事件的有①③,共2个;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、90【分析】先根据等边三角形的的性质和三角形的外角性质求出∠ACP,进而求得可得∠BCP,最后根据圆周角定理∠BOP=2∠BCP=90°.【详解】解:∵∠A=∠ACB=60°,∠ADP=75°,∴∠ACP=∠ADP-∠A=15°,∴∠BCP=∠ACB-∠ACP=45°,∴∠BOP=2∠BCP=90°.故答案为90.【点睛】此题主要考查了等边三角形的的性质,三角形外角的性质,以及圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14、16cm【解析】∵△ABC∽△A′B′C′,,∴C△ABC:C△A′B′C′=3:4,又∵C△ABC=12cm,∴C△A′B′C′=16cm.故答案为16.15、【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】抛物线的顶点坐标为(﹣1,﹣3),向左平移2个单位后的抛物线的顶点坐标为(﹣3,﹣3),所以,平移后的抛物线的解析式为.故答案为:.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.16、【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).故答案为:.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.17、【分析】根据图象的平移规律,可得答案.【详解】解:将抛物线向右平移个单位,向上平移1个单位长度得到的抛物线的解析式是将抛物线,
故答案为:.【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.18、④【分析】利用图象信息一一判断即可解决问题.【详解】解:①由图可知,速度相同的情况下,小红比小兰提前停下来,时间花的短,故小红的运动路程比小兰的短,故本选项不符合题意;
②两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;
③当小红运动到点D的时候,小兰也在点D,故本选项不符合题意;
④当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t==4.84,故本选项正确;
故答案为:④.【点睛】本题考查动点问题函数图象、解题的关键是读懂图象信息,属于中考常考题型.三、解答题(共78分)19、(1)P(抽到数字为2)=;(2)不公平,理由见解析.【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析:(1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=,乙获胜的情况有2种,P=,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.20、(1);;菱形;2;(2);(3),或,.【分析】(1)当y=0时可求出点A坐标为,B坐标为,AB=4,根据四边形四边相等可知该四边形为菱形,由可知抛物线顶点坐标为(1,-4),所以B,AB=8,即可得到为2;(2)惊喜度为1即,利用抛物线解析式分别求出各点坐标,从而得到AC和BD的长,计算即可求出m;(3)先求出顶点坐标,对称轴为直线,讨论对称轴直线是否在这个范围内,分3中情况分别求出最大值为16是m的值.【详解】解:(1)在抛物线上,当y=0时,,解得,,,∵点在点右边,∴A点的坐标为,B点的坐标为;∴AB=4,∵∴顶点B的坐标为,由于BD关于x轴对称,∴D的坐标为,∴BD=8,通过抛物线的对称性得到AB=BC,又由于翻折,得到AB=BC=AD=CD,∴惊喜四边形为菱形;;(2)由题意得:的顶点坐标,解得:,∴∴,(3)抛物线的顶点为,对称轴为直线:①即时,,得∴②即时,时,对应惊喜线上最高点的函数值,∴(舍去);∴③即时形成不了惊喜线,故不存在综上所述,,或,【点睛】本题主要考查了二次函数的综合问题,需要熟练掌握二次函数的基础内容:顶点坐标、对称轴以及各交点的坐标求法.21、(1)t=2s;(2)t=1.2s或3s.【分析】(1)根据等腰三角形的性质可得QA=AP,从而可以求得结果;(2)分与两种情况结合相似三角形的性质讨论即可.【详解】(1)由QA=AP,即6-t=2t,得t=2(秒);(2)当时,△QAP~△ABC,则,解得t=1.2(秒)当时,△QAP~△ABC,则,解得t=3(秒)∴当t=1.2或3时,△QAP~△ABC.22、(1)见解析;(2)【分析】(1)连接OC,先根据得出∠AOC=∠BOC,利用角平分线的性质即可得出结论;(2)在直角三角形中利用的特性结合勾股定理,利用面积公式即可求得的面积,同理可求得的面积,继而求得答案.【详解】(1)连接,∵,∴,∵,∴;(2)∵,∴,∵,∴,∵,∴,∴,∴,同理可得,∴.【点睛】本题考查的是圆心角、弧、弦的关系,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.23、(1);(2)【分析】(1)利用频率估计概率,则摸到绿球的概率为0.2,然后利用概率公式列方程即可;(2)画出树状图,然后根据概率公式求概率即可.【详解】解:(1)∵经过大量实验,摸到绿球的频率稳定于0.2,∴摸到绿球的概率为0.2∴解得:,经检验是原方程的解.(2)树状图如下图所示:由树状图可知:共有12种等可能的结果,其中两次摸出不同颜色球的结果共有10种,故两次摸出不同颜色球的概率为:【点睛】此题考查的是利用频率估计概率、画树状图及概率公式,掌握画树状图分析结果和利用概率公式求概率是解决此题的关键.24、(1)m<1;(2)m<0【分析】(1)根据题意可知一元二次方程有两个不相等的实数根,即b2-4ac>0然后利用根的判别式确定取值范围;(2)由题意得:x1x2<0,即m<0,即可求解;【详解】解:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版中药材抚育承包合作合同3篇
- 二零二五年绿色环保外架爬架租赁与施工合同3篇
- 二零二五年教育资源共享与销售合同样本3篇
- 二零二五版房地产项目土地二级开发与销售合同协议书3篇
- 二零二五版企业内部股权交易及管理服务合同2篇
- 二零二五年酒店集团年度客户关系管理合作合同范本2篇
- 二零二五年船舶开荒保洁与设备维护合同范本3篇
- 二零二五版废弃物处理厂环境监测与治理服务合同3篇
- 二零二五版绿色金融贷款合同:绿色金融创新项目民间借贷合作协议3篇
- 二零二五版医疗机构患者隐私保护保密合同3篇
- 《保单检视专题》课件
- 建筑保温隔热构造
- 智慧财务综合实训
- 安徽省合肥市2021-2022学年七年级上学期期末数学试题(含答案)3
- 教育专家报告合集:年度得到:沈祖芸全球教育报告(2023-2024)
- 肝脏肿瘤护理查房
- 护士工作压力管理护理工作中的压力应对策略
- 2023年日语考试:大学日语六级真题模拟汇编(共479题)
- 皮带拆除安全技术措施
- ISO9001(2015版)质量体系标准讲解
- 《培训资料紧固》课件
评论
0/150
提交评论