2022年新疆阿克苏地区沙雅县数学九上期末经典模拟试题含解析_第1页
2022年新疆阿克苏地区沙雅县数学九上期末经典模拟试题含解析_第2页
2022年新疆阿克苏地区沙雅县数学九上期末经典模拟试题含解析_第3页
2022年新疆阿克苏地区沙雅县数学九上期末经典模拟试题含解析_第4页
2022年新疆阿克苏地区沙雅县数学九上期末经典模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为,则根据题意可列方程为()A. B.C. D.2.如图,反比例函数y=与y=的图象上分别有一点A,B,且AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,若矩形ABCD的面积为8,则b﹣a=()A.8 B.﹣8 C.4 D.﹣43.我国古代数学名著《孙子算经》中记载了一道大题,大意是:匹马恰好拉了片瓦,已知匹小马能拉片瓦,匹大马能拉片瓦,求小马、大马各有多少匹,若设小马有匹,大马有匹,依题意,可列方程组为()A. B.C. D.4.对于抛物线,下列说法中错误的是()A.顶点坐标为B.对称轴是直线C.当时,随的增大减小D.抛物线开口向上5.解方程,选择最适当的方法是()A.直接开平方法 B.配方法 C.公式法 D.因式分解法6.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,若∠BAC=20°,则∠ADC的度数是()A.90° B.100° C.110° D.130°7.关于反比例函数,下列说法不正确的是()A.y随x的增大而减小 B.图象位于第一、三象限C.图象关于直线对称 D.图象经过点(-1,-5)8.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣29.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.910.在Rt△ABC中,∠C=90°,若BC=3,AC=4,则sinB的值为()A. B. C. D.11.若,相似比为2,且的面积为12,则的面积为()A.3 B.6 C.24 D.4812.某楼盘2016年房价为每平方米11000元,经过两年连续降价后,2018年房价为9800元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为()A.9800(1-x)2+9800(1-x)+9800=11000 B.9800(1+x)2+9800(1+x)+9800=11000C.11000(1+x)2=9800 D.11000(1-x)2=9800二、填空题(每题4分,共24分)13.如图,直线∥轴,分别交反比例函数和图象于、两点,若S△AOB=2,则的值为_______.14.已知m,n是方程的两个根,则代数式的值是__________.15.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________,点的坐标是__________.16.圆锥的母线长是5cm,底面半径长是3cm,它的侧面展开图的圆心角是____.17.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.18.一元二次方程的两根为,,则的值为____________.三、解答题(共78分)19.(8分)(1)计算:|﹣1|+2sin45°﹣+tan260°;(2)已知:,求.20.(8分)如图,在矩形中,是上一点,连接的垂直平分线分别交于点,连接.(1)求证:四边形是菱形;(2)若为的中点,连接,求的长.21.(8分)如图,点D、O在△ABC的边AC上,以CD为直径的⊙O与边AB相切于点E,连结DE、OB,且DE∥OB.(1)求证:BC是⊙O的切线.(2)设OB与⊙O交于点F,连结EF,若AD=OD,DE=4,求弦EF的长.22.(10分)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调查结果绘制成如下不完整的统计表和统计图.学生选修课程统计表课程人数所占百分比声乐14舞蹈8书法16摄影合计根据以上信息,解答下列问题:(1),.(2)求出的值并补全条形统计图.(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.23.(10分)如图,已知二次函数的图象与轴交于、两点(点在点的左侧),与轴交于点,且,顶点为.(1)求二次函数的解析式;(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;(3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.24.(10分)计算:(1);(2)解方程:.25.(12分)如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F(1)求证:△ABE∽△DEF;(2)求EF的长.26.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.(1)求P点的坐标;(2)若△POQ的面积为9,求k的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据2019年的产量=2017年的产量×(1+年平均增长率)2,即可列出方程.【详解】解:根据题意可得,2018年的产量为50(1+x),

2019年的产量为50(1+x)(1+x)=50(1+x)2,

即所列的方程为:50(1+x)2=1.

故选:B.【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程.2、A【分析】根据反比例函数系数k的几何意义得到|a|=S矩形ADOE,|b|=S矩形BCOE,进而得到|b|+|a|=8,然后根据a<0,b>0可得答案.【详解】解:如图,∵AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,∴|a|=S矩形ADOE,|b|=S矩形BCOE,∵矩形ABCD的面积为8,∴S矩形ABCD=S矩形ADOE+S矩形BCOE=8,∴|b|+|a|=8,∵反比例函数y=在第二象限,反比例函数y=在第一象限,∴a<0,b>0,∴|b|+|a|=b﹣a=8,故选:A.【点睛】本题考查了反比例函数y=(k≠0)的系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.3、A【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①小马数+大马数=100;②小马拉瓦数+大马拉瓦数=100,根据等量关系列出方程组即可.【详解】设小马有x匹,大马有y匹,由题意得:,故选:A.【点睛】本题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.4、C【分析】A.将抛物线一般式化为顶点式即可得出顶点坐标,由此可判断A选项是否正确;B.根据二次函数的对称轴公式即可得出对称轴,由此可判断B选项是否正确;C.由函数的开口方向和顶点坐标即可得出当时函数的增减性,由此可判断C选项是否正确;D.根据二次项系数a可判断开口方向,由此可判断D选项是否正确.【详解】,∴该抛物线的顶点坐标是,故选项A正确,对称轴是直线,故选项B正确,当时,随的增大而增大,故选项C错误,,抛物线的开口向上,故选项D正确,故选:C.【点睛】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小.在本题中能将二次函数一般式化为顶点式(或会用顶点坐标公式计算)得出顶点坐标是解决此题的关键.5、D【解析】根据方程含有公因式,即可判定最适当的方法是因式分解法.【详解】由已知,得方程含有公因式,∴最适当的方法是因式分解法故选:D.【点睛】此题主要考查一元二次方程解法的选择,熟练掌握,即可解题.6、C【解析】根据三角形内角和定理以及圆内接四边形的性质即可解决问题;【详解】解:∵AB是直径,

∴∠ACB=90°,

∵∠BAC=20°,

∴∠B=90°-20°=70°,

∵∠ADC+∠B=180°,

∴∠ADC=110°,

故选C.【点睛】本题考查圆内接四边形的性质、三角形的内角和定理、圆周角定理等知识,解题的关键是熟练掌握基本知识.7、A【分析】根据反比例函数的图像及性质逐个分析即可.【详解】解:选项A:要说成在每一象限内y随x的增大而减小,故选项A错误;选项B:,故图像经过第一、三象限,所以选项B正确;选项C:反比例函数关于直线对称,故选项C正确;选项D:将(-1,-5)代入反比例函数中,等号两边相等,故选项D正确.故答案为:A.【点睛】本题考查了反比例函数的性质;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.8、B【分析】根据二次根式有意义的条件可得,再解不等式即可.【详解】解:由题意得:,解得:,

故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.9、A【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=10°,OB=1,∴AO=1,则OP=6,故BP=6-1=1.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.10、A【分析】根据三角函数的定义解决问题即可.【详解】解:如图,在Rt△ABC中,∵∠C=90°,BC=3,AC=4,∴AB=,∴sinB==故选:A.【点睛】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.11、A【解析】试题分析:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为12,∴△DEF的面积为:12×=1.故选A.考点:相似三角形的性质.12、D【分析】设该楼盘这两年房价每年平均降低率为x,则第一次降价后房价为每平方米11000(1-x)元,第二次降价后房价为每平方米11000(1-x)2元,然后找等量关系列方程即可.【详解】解:设该楼盘这两年房价每年平均降低率为x,则由题意得:11000(1-x)2=9800故答案为D.【点睛】本题考查了一元二次方程的应用,审清题意、找到等量关系是解决问题的关键.二、填空题(每题4分,共24分)13、1【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd-ab=1,即可得出答案.【详解】设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=2,∴,∴cd-ab=1,∴k2-k1=1,故答案为:1.【点睛】本题主要考查了对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd-ab=1是解此题的关键.14、1【分析】由m,n是方程x2-x-2=0的两个根知m+n=1,m2-m=2,代入到原式=2(m2-m)-(m+n)计算可得.【详解】解:∵m,n是方程x2-x-2=0的两个根,

∴m+n=1,m2-m=2,

则原式=2(m2-m)-(m+n)

=2×2-1

=4-1

=1,

故答案为:1.【点睛】本题主要考查根与系数的关系,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,,x1x2=.15、(2,2)【分析】根据坐标系中,以点为位似中心的位似图形的性质可得点D的坐标,过点C作CM⊥OD于点M,根据含30°角的直角三角形的性质,可求点C的坐标.【详解】∵与是以点为位似中心的位似图形,相似比为,点的坐标是,∴点D的坐标是(8,0),∵,,∴∠D=30°,∴OC=OD=×8=4,过点C作CM⊥OD于点M,∴∠OCM=30°,∴OM=OC=×2=2,CM=OM=2,∴点C的坐标是(2,2).故答案是:(2,2);(8,0).【点睛】本题主要考查直角坐标系中,位似图形的性质和直角三角形的性质,添加辅助线,构造直角三角形,是解题的关键.16、216°.【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17、甲【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故答案为甲.【点睛】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18、2【解析】根据一元二次方程根的意义可得+2=0,根据一元二次方程根与系数的关系可得=2,把相关数值代入所求的代数式即可得.【详解】由题意得:+2=0,=2,∴=-2,=4,∴=-2+4=2,故答案为2.【点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.三、解答题(共78分)19、(1)2;(2)【分析】(1)利用绝对值的意义、特殊角的三角函数值和二次根式的性质进行计算,再合并即可;

(2)先根据分式的除法将所求式子进行变形,再将已知式子的值代入即可得出结果.【详解】解:(1)原式=﹣1+2×﹣2+()2=﹣1+﹣2+3=2;(2)∵,∴.【点睛】本题考查了特殊角的三角函数值、二次根式的混合运算以及比例的性质和分式的除法法则,掌握基本运算法则,能灵活运用比例的性质进行变形是解此题的关键.20、(1)证明见解析;(2)1.【分析】(1)先根据矩形的性质、平行线的性质可得,再根据垂直平分线的性质可得,然后根据三角形全等的判定定理与性质可得,最后根据平行四边形的判定、菱形的判定即可得证;(2)先根据三角形中位线定理可得,再根据矩形的性质可得,然后在中,利用勾股定理即可得.【详解】(1)四边形是矩形垂直平分四边形是平行四边形又四边形是菱形;(2)垂直平分是的中点是的中点,(三角形中位线定理).【点睛】本题考查了矩形的性质、菱形的判定、三角形全等的判定定理与性质、三角形中位线定理等知识点,熟练掌握并灵活运用各判定定理与性质是解题关键.21、(1)见解析;(2)1【分析】(1)连接OE,根据切线的性质得到OE⊥AB,根据平行线的性质得到∠BOC=∠EDO,∠BOE=∠DEO,根据全等三角形的性质得到∠OCB=∠OEB=90°,于是得到BC是⊙O的切线;(2)根据直角三角形的性质得到OD=DE=1,推出四边形DOFE是平行四边形,得到EF=OD=1.【详解】(1)证明:连接OE,∵以CD为直径的⊙O与边AB相切于点E,∴OE⊥AB,∵DE∥OB,∴∠BOC=∠EDO,∠BOE=∠DEO,∵OE=OD,∴∠EDO=∠DEO,∴∠BOC=∠BOE,∵OB=OB,OC=OE,∴△OCB≌△OEB(SAS),∴∠OCB=∠OEB=90°,∴BC是⊙O的切线;(2)解:∵∠AEO=90°,AD=OD,∴ED=AO=OD,∴OD=DE=1,∵DE∥OF,DE=OD=OF,∴四边形DOFE是平行四边形,∴EF=OD=1,∴弦EF的长为1.【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,等腰三角形的性质,正确的作出辅助线是解题的关键.22、(1)50、28;(2),补全图形见解析;(3)估计选修“声乐”课程的学生有420人;(4)所抽取的2人恰好来自同一个班级的概率为.【分析】(1)由舞蹈人数及其所占百分比可得的值,声乐人数除以总人数即可求出的值;(2)总人数乘以摄影对应百分比求出其人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.【详解】(1),,即,故答案为50、28;(2),补全图形如下:(3)估计选修“声乐”课程的学生有(人.(4)七(1)班的学生记作1,七(2)班的学生记作2,画树状图为:∴共有12种等可能的结果数,其中抽取的2名学生恰好来自同一个班级的结果数为4,则所抽取的2人恰好来自同一个班级的概率为.【点睛】本题考查了统计表、条形统计图、样本估计总体、列表法与树状图法求概率:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.23、(1);(2);(3)存在,,.【解析】(1)可根据OB、OC的长得出B、C两点的坐标,然后用待定系数法即可求出抛物线的解析式.

(2)可将四边形ACPQ分成直角三角形AOC和直角梯形CQPC两部分来求解.先根据抛物线的解析式求出A点的坐标,即可得出三角形AOC直角边OA的长,据此可根据上面得出的四边形的面积计算方法求出S与m的函数关系式.

(3)先根据抛物线的解析式求出M的坐标,进而可得出直线BM的解析式,据此可设出N点的坐标,然后用坐标系中两点间的距离公式分别表示出CM、MN、CN的长,然后分三种情况进行讨论:①CM=MN;②CM=CN;③MN=CN.根据上述三种情况即可得出符合条件的N点的坐标.【详解】解:(1)∵,∴,.∴,解得,∴二次函数的解析式为;(2),设直线的解析式为,则有解得∴直线的解析式为∵轴,,∴点的坐标为;(3)线段上存在点,使为等腰三角形.设点坐标为则:,,①当时,解得,(舍去)此时②当时,,解得,(舍去),此时③当时,解得,此时.【点睛】本题考查了二次函数解析式的确定、图形的面积求法、函数图象交点、等腰三角形的判定等知识及综合应用知识、解决问题的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论