版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,将RtABC绕直角项点C顺时针旋转90°,得到A'B'C,连接AA',若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°2.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A.40° B.110° C.70° D.140°3.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个4.计算的结果是()A. B. C. D.15.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是()A. B. C. D.6.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()A. B.C. D.7.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<08.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△BEC=S△ADF.其中正确的有()A.1个 B.2个 C.3个 D.4个9.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76° B.78° C.80° D.82°10.化简的结果为()A.﹣1 B.1 C. D.二、填空题(共7小题,每小题3分,满分21分)11.一元二次方程x(x﹣2)=x﹣2的根是_____.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.13.因式分解:.14.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有_____个.15.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.16.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____.17.如图,△ABC是直角三角形,∠C=90°,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tan∠OCB=_____三、解答题(共7小题,满分69分)18.(10分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型ABABO人数105(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?19.(5分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.20.(8分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.(1)求抛物线的函数表达式;(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.21.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.队别平均分中位数方差合格率优秀率七年级6.7m3.4190%n八年级7.17.51.6980%10%(1)请依据图表中的数据,求a、b的值;(2)直接写出表中的m、n的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.22.(10分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.(1)求证:BH=EH;(2)如图2,当点G落在线段BC上时,求点B经过的路径长.23.(12分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.24.(14分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将RtABC绕直角项点C顺时针旋转90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.2、B【解析】
先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.【详解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故选B.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.3、C【解析】
根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.4、D【解析】
根据同分母分式的加法法则计算可得结论.【详解】===1.故选D.【点睛】本题考查了分式的加减法,解题的关键是掌握同分母分式的加减运算法则.5、A【解析】
根据菱形的判定方法一一判定即可【详解】作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意故选A【点睛】本题考查平行四边形的判定,能理解每个图的作法是本题解题关键6、C【解析】
根据左视图是从物体的左面看得到的视图解答即可.【详解】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选C.【点睛】本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.7、D【解析】
由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.【详解】解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)∴该函数是开口向上的,a>0
∵y=ax2+bx﹣2过点(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵顶点在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.8、C【解析】
根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.【详解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴,即BC•AD=AB•BE,∵∠AEB=90°,AE=BE,∴AB=BEBC•AD=BE•BE,∴BC•AD=AE2;③正确;设AE=a,则AB=a,∴CE=a﹣a,∴=,即,∵AF=AB,∴,∴S△BEC≠S△ADF,故④错误,故选:C.【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9、B【解析】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选B.10、B【解析】
先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【详解】解:.故选B.二、填空题(共7小题,每小题3分,满分21分)11、1或1【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可得答案.【详解】x(x﹣1)=x﹣1,x(x﹣1)﹣(x﹣1)=0,(x﹣1)(x﹣1)=0,x﹣1=0,x﹣1=0,x1=1,x1=1,故答案为:1或1.【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.12、AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.详解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案为:AC=BC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13、;【解析】
根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【详解】x2﹣x﹣12=(x﹣4)(x+3).故答案为(x﹣4)(x+3).14、1【解析】试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.15、1【解析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.16、【解析】
若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.【详解】解:∵方程有两个实数根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤且k≠1,故答案为k≤且k≠1.【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17、【解析】
利用勾股定理求出AB,再证明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解决问题.【详解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四边形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案为.【点睛】本题考查菱形的性质、勾股定理、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.三、解答题(共7小题,满分69分)18、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:血型ABABO人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=,3000×=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.19、见解析【解析】
解:不公平,理由如下:列表得:12321,22,23,231,32,33,341,42,43,4由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,则甲获胜的概率为、乙获胜的概率为,∵,∴这个游戏对甲、乙双方不公平.【点睛】考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)y=x2+x﹣;(2)y=﹣x+1;(3)当x=﹣2时,最大值为;(4)存在,点D的横坐标为﹣3或或﹣.【解析】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,则即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可.【详解】(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函数的表达式为:①;(2)过点D作DF⊥x轴交于点F,过点E作y轴的平行线交直线AD于点M,∵OC∥DF,∴OF=5OA=5,故点D的坐标为(﹣5,6),将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:即直线AD的表达式为:y=﹣x+1,(3)设点E坐标为则点M坐标为则∵故S△ACE有最大值,当x=﹣2时,最大值为;(4)存在,理由:①当AP为平行四边形的一条边时,如下图,设点D的坐标为将点A向左平移2个单位、向上平移4个单位到达点P的位置,同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,则点Q的坐标为将点Q的坐标代入①式并解得:②当AP为平行四边形的对角线时,如下图,设点Q坐标为点D的坐标为(m,n),AP中点的坐标为(0,2),该点也是DQ的中点,则:即:将点D坐标代入①式并解得:故点D的横坐标为:或或.【点睛】本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.21、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.【解析】试题分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.试题解析:(1)根据题意得:解得a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为=20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.22、(1)见解析;(2)B点经过的路径长为π.【解析】
(1)、连接AH,根据旋转图形的性质得出AB=AE,∠ABH=∠AEH=90°,根据AH为公共边得出Rt△ABH和Rt△AEH全等,从而得出答案;(2)、根据题意得出∠EAB的度数,然后根据弧长的计算公式得出答案.【详解】(1)、证明:如图1中,连接AH,由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)、解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60°,∴弧BE的长为=π,即B点经过的路径长为π.【点睛】本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型.明白旋转图形的性质是解决这个问题的关键.23、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..【解析】
(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖合同格式模板
- 2024舞蹈教室租赁合同样本
- 2024年家庭居室装修工程协议
- 年西安市设备技术转让合同样本-合同范本
- 2024工程建设招标投标协议合同范本
- 简约技术专利权转让合同
- 2024公司股份转让合同股份转让后可以毁约
- 2024年车辆矿石运输合同范本
- 废料回收权转让协议
- 公司流动资金借款合同
- 高效沟通与管理技能提升课件
- 消防维保方案 (详细完整版)
- 四年级上册英语课件- M3U1 In the school (Period 3 ) 上海牛津版试用版(共15张PPT)
- 档案馆建设标准
- 高边坡支护专家论证方案(附有大量的图件)
- 苏教版五年级上册数学试题-第一、二单元 测试卷【含答案】
- 人员定位矿用井口唯一性检测系统
- 电力系统数据标记语言E语言格式规范CIME
- 历史纪年与历史年代的计算方法
- 快递物流运输公司 国际文件样本 形式发票样本
- 管理信息系统题目带答案
评论
0/150
提交评论