



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年贵州省兴仁市回龙镇回龙中学初中数学毕业考试模拟冲刺卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列运算正确的是()A.5a+2b=5(a+b) B.a+a2=a3C.2a3•3a2=6a5 D.(a3)2=a52.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个3.如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A.美 B.丽 C.泗 D.阳4.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.5.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形6.估计﹣1的值为()A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间7.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为()A.10cm B.20cm C.10πcm D.20πcm8.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=45,反比例函数yA.10B.9C.8D.69.如图所示的几何体的俯视图是()A. B. C. D.10.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.同时掷两粒骰子,都是六点向上的概率是_____.12.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.13.如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.14.如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90°至AB',点M是线段AB'的中点,若反比例函数y=(k≠0)的图象恰好经过点B'、M,则k=_____.15.27的立方根为.16.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.17.化简:=__________.三、解答题(共7小题,满分69分)18.(10分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为.填空:______;证明:;当四边形ABCD的面积和的面积相等时,求点P的坐标.19.(5分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:2≈1.41420.(8分)如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈,cos76°≈,tan76°≈4,sin53°≈,tan53°≈)21.(10分)小明对,,,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表超市女工人数占比62.5%62.5%50%75%超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.22.(10分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.23.(12分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).根据以上信息回答下列问题:训练后学生成绩统计表中n,并补充完成下表:若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.24.(14分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.
2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【答案解析】
直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【题目详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【答案点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.2、B【答案解析】
通过图象得到、、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.【题目详解】由图象可知,抛物线开口向下,则,,抛物线的顶点坐标是,抛物线对称轴为直线,,,则①错误,②正确;方程的解,可以看做直线与抛物线的交点的横坐标,由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,则方程有两个相等的实数根,③正确;由抛物线对称性,抛物线与轴的另一个交点是,则④错误;不等式可以化为,抛物线顶点为,当时,,故⑤正确.故选:.【答案点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.3、D【答案解析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【题目详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【答案点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键.4、B【答案解析】
根据轴对称图形的概念对各选项分析判断即可得出答案.【题目详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.5、D【答案解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;
B、四条边相等的四边形是菱形,故错误;
C、对角线相互平分的四边形是平行四边形,故错误;
D、对角线相等且相互平分的四边形是矩形,正确;
故选D.点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.6、C【答案解析】分析:根据被开方数越大算术平方根越大,可得答案.详解:∵<<,∴1<<5,∴3<﹣1<1.故选C.点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出1<<5是解题的关键,又利用了不等式的性质.7、A【答案解析】测试卷解析:扇形的弧长为:=20πcm,∴圆锥底面半径为20π÷2π=10cm,故选A.考点:圆锥的计算.8、A【答案解析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA•sin∠AOB=45a,OM=OA2∴点A的坐标为(35a,4∵点A在反比例函数y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF•sin∠FBN=45b,BN=BF2∴点F的坐标为(10+35b,4∵点F在反比例函数y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故选A.“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=12S菱形OBCA9、D【答案解析】测试卷分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.10、D【答案解析】测试卷分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别二、填空题(共7小题,每小题3分,满分21分)11、.【答案解析】
同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.【题目详解】解:都是六点向上的概率是.【答案点睛】本题考查了概率公式的应用.12、【答案解析】
根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【题目详解】解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是.故答案为:.【答案点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=13、1【答案解析】
利用△ACD∽△CBD,对应线段成比例就可以求出.【题目详解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.【答案点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.14、12【答案解析】
根据题意可以求得点B'的横坐标,然后根据反比例函数y=(k≠0)的图象恰好经过点B'、M,从而可以求得k的值.【题目详解】解:作B′C⊥y轴于点C,如图所示,∵∠BAB′=90°,∠AOB=90°,AB=AB′,∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,∴∠ABO=∠BA′C,∴△ABO≌△BA′C,∴AO=B′C,∵点A(0,6),∴B′C=6,设点B′的坐标为(6,),∵点M是线段AB'的中点,点A(0,6),∴点M的坐标为(3,),∵反比例函数y=(k≠0)的图象恰好经过点M,∴=,解得,k=12,故答案为:12.【答案点睛】本题考查反比例函数图象上点的坐标特征、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15、1【答案解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算16、200【答案解析】
先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.【题目详解】解:∵⊙O的直径为1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC===300mm,∴CD=OD-OC=500-300=200(mm).
答:水的最大深度为200mm.故答案为:200【答案点睛】本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.17、a+b【答案解析】
将原式通分相减,然后用平方差公式分解因式,再约分化简即可。【题目详解】解:原式====a+b【答案点睛】此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键.三、解答题(共7小题,满分69分)18、(1)1;(2)证明见解析;(1)点坐标为.【答案解析】
由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;设A点坐标为,则D点坐标为,P点坐标为,C点坐标为,进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合可得出∽,由相似三角形的性质可得出,再利用“同位角相等,两直线平行”可证出;由四边形ABCD的面积和的面积相等可得出,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.【题目详解】解:点在反比例函数的图象,.故答案为:1.证明:反比例函数解析式为,设A点坐标为轴于点C,轴于点D,点坐标为,P点坐标为,C点坐标为,,,,,,,.又,∽,,.解:四边形ABCD的面积和的面积相等,,,整理得:,解得:,舍去,点坐标为.【答案点睛】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面积公式,找出关于a的方程.19、(1)173;(2)点C位于点A的南偏东75°方向.【答案解析】测试卷分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.测试卷解析:解:(1)如答图,过点A作AD⊥BC于点D.由图得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=503.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=AD答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(1003)2=40000,BC2=2002=40000,∴AB2+AC2=BC2.∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.考点:1.解直角三角形的应用(方向角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.勾股定理和逆定理.20、工作人员家到检查站的距离AC的长约为km.【答案解析】分析:过点B作BH⊥l交l于点H,解Rt△BCH,得出CH=BC•sin∠CBH=,BH=BC•cos∠CBH=.再解Rt△BAH中,求出AH=BH•tan∠ABH=,那么根据AC=CH-AH计算即可.详解:如图,过点B作BH⊥l交l于点H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7km,∴CH=BC•sin∠CBH≈,BH=BC•cos∠CBH≈.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=,∴AH=BH•tan∠ABH≈,∴AC=CH﹣AH=(km).答:工作人员家到检查站的距离AC的长约为km.点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21、(1)32(人),25(人);(2);(3)乙同学,见解析.【答案解析】
(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;
(2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;
(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.【题目详解】解:(1)A超市共有员工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四个超市共有女工:20×=90(人).从这些女工中随机选出一个,正好是C超市的概率为=.(3)乙同学.理由:D超市有女工20×=15(人),共有员工15÷75%=20(人),再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为=≠75%.【答案点睛】本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)△ACB的面积为1.【答案解析】
(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【题目详解】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=×2×1=1.【答案点睛】本题主要考查一次函数与反比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国有土地开发建设合同范文
- 国际商标使用权转让合同标准格式
- 合资成立分公司合同书
- 成都市房屋租赁简易合同模板
- 项目出资合同模板
- 水产养殖基地建设承包合同范本
- 建筑工程施工合同样本(律师审核版)
- 诉讼离婚合同范本
- 广播电视设备智能生物药品临床应用技术考核试卷
- 信息技术创新与数字化转型考核试卷
- 新能源汽车驱动电机及控制系统检修教案 学习情境 1:驱动电机的认知
- 湖北省黄冈市2023-2024学年五年级上学期数学期中试卷(含答案)
- 小组合作学习组内分工及职责
- GB/T 44351-2024退化林修复技术规程
- ××管业分销市场操作方案
- 《ISO 41001-2018 设施管理- 管理体系 要求及使用指南》专业解读与应用指导材料之15:“7支持-7.6 组织知识”(雷泽佳编制-2024)
- 2024年建设工程质量检测人员-建设工程质量检测人员(主体结构工程)考试近5年真题集锦(频考类试题)带答案
- 《向量共线定理》同步课件
- 小学数学学习经验交流课件
- 2024年第二批政府专职消防员招录报名表
- 2024年初级消防员职业技能鉴定考试复习题库(单选、多选题)
评论
0/150
提交评论