假设检验在统计方法中的地位课件_第1页
假设检验在统计方法中的地位课件_第2页
假设检验在统计方法中的地位课件_第3页
假设检验在统计方法中的地位课件_第4页
假设检验在统计方法中的地位课件_第5页
已阅读5页,还剩251页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

StatisticsStatistics1假设检验在统计方法中的地位参数估计假设检验统计方法描述统计推断统计利用样本统计量去估计总体的参数假设总体参数,用样本信息去检验这个假设是否成立假设检验在统计方法中的地位参数估计假设检验统计方法描述统计推2第6章假设检验6.1

假设检验的基本问题6.2

一个总体参数的检验6.3

两个总体参数的检验6.4

检验问题的进一步说明第6章假设检验6.1假设检验的基本问题3学习目标了解假设检验的基本思想掌握假设检验的步骤对实际问题作假设检验利用P-值进行假设检验学习目标了解假设检验的基本思想4正常人的平均体温是37oC吗?当问起健康的成年人体温是多少时,多数人的回答是37oC,这似乎已经成了一种共识。下面是一个研究人员测量的50个健康成年人的体温数据37.136.936.937.136.436.936.636.236.736.937.636.737.336.936.436.137.136.636.536.737.136.236.337.536.937.036.736.937.037.136.637.236.436.637.336.137.137.036.636.936.737.236.337.136.736.837.037.036.137.0正常人的平均体温是37oC吗?当问起健康的成年人体温是多少正常人的平均体温是37oC吗?根据样本数据计算的平均值是36.8oC,标准差为0.36oC根据参数估计方法得到的健康成年人平均体温的95%的置信区间为(36.7,36.9)。研究人员发现这个区间内并没有包括37oC因此提出“不应该再把37oC作为正常人体温的一个有任何特定意义的概念”我们应该放弃“正常人的平均体温是37oC”这个共识吗?本章的内容就将提供一套标准统计程序来检验这样的观点正常人的平均体温是37oC吗?根据样本数据计算的平均值是36.1假设检验的基本问题6.1.1假设问题的提出6.1.2假设的表达式6.1.3两类错误6.1.4假设检验的流程6.1.5利用P值进行决策6.1.6单侧检验6.1假设检验的基本问题6.1.1假设问题的提出7总体假设检验的过程抽取随机样本均值

x

=20我认为人口的平均年龄是50岁提出假设

拒绝假设别无选择!作出决策总体假设检验的过程抽取随机样本均值

x=8假设检验的基本思想...因此我们拒绝假设

=50...如果这是总体的假设均值样本均值m=50抽样分布H0这个值不像我们应该得到的样本均值...20假设检验的基本思想...因此我们拒绝假设=50..9假设检验在假设检验中,一般要设立一个原假设;而设立该假设的动机主要是企图利用人们掌握的反映现实世界的数据来找出假设和现实的矛盾,从而否定这个假设。假设检验在假设检验中,一般要设立一个原假设;10假设检验在多数统计教科书中(除了理论探讨之外),假设检验都是以否定原假设为目标。如否定不了,那就说明证据不足,无法否定原假设。但这不能说明原假设正确。很多教科书在这个问题上不适当地用“接受原假设”的说法,犯了明显的低级逻辑错误。假设检验在多数统计教科书中(除了理论探讨之外),假设检验都11假设检验的过程和逻辑首先要提出一个原假设,比如某正态总体的均值等于5(m=5)。这种原假设也称为零假设(nullhypothesis),记为H0与此同时必须提出对立假设,比如总体均值大于5(m>5)。对立假设又称为备选假设或备择假设(alternativehypothesis)记为记为H1或Ha假设检验的过程和逻辑首先要提出一个原假设,比如某正态总体的12假设检验的过程和逻辑根据零假设(不是备选假设!),我们可以得到该检验统计量的分布;然后再看这个统计量的数据实现值(realization)属不属于小概率事件。也就是说把数据代入检验统计量,看其值是否落入零假设下的小概率范畴如果的确是小概率事件,那么我们就有可能拒绝零假设,否则我们说没有足够证据拒绝零假设。假设检验的过程和逻辑根据零假设(不是备选假设!),我们可以13假设检验的过程和逻辑注意:零假设和备选假设在我们涉及的假设检验中并不对称。检验统计量的分布是从零假设导出的,因此,如果有矛盾,当然就不利于零假设了。不发生矛盾也不说明备选假设有问题。假设检验的过程和逻辑注意:零假设和备选假设在我们涉及的假设14假设问题的提出假设问题的提出15什么是假设?

(hypothesis)对总体参数的的数值所作的一种陈述总体参数包括总体均值、比例、方差等分析之前必需陈述我认为这种新药的疗效比原有的药物更有效!什么是假设?

(hypothesis)对总体参数的的数值什么是假设检验?

(hypothesistesting)事先对总体参数或分布形式作出某种假设,然后利用样本信息来判断原假设是否成立有参数假设检验和非参数假设检验采用逻辑上的反证法,依据统计上的小概率原理小概率是在一次试验中,一个几乎不可能发生的事件发生的概率在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设什么是假设检验?

(hypothesistesting)17提出原假设和备择假设什么是原假设?(nullhypothesis)1.待检验的假设,又称“0假设”2.研究者想收集证据予以反对的假设3.总是有等号,或4.表示为H0H0:

某一数值指定为=号,即或例如,H0:

3190(克)提出原假设和备择假设什么是原假设?(nullhypot18什么是备择假设?(alternativehypothesis)与原假设对立的假设,也称“研究假设”研究者想收集证据予以支持的假设总是有不等号:,

或备择假设通常用于表达研究者自己倾向于支持的看法,然后就是想办法收集证据拒绝原假设,以支持备择假设,表示为H1H1:

<某一数值,或某一数值例如,H1:

<3910(克),或3910(克)注意:零假设和备选假设在我们涉及的假设检验中并不对称。提出原假设和备择假设什么是备择假设?(alternativehypothe19假设检验中的两类错误(决策风险)假设检验中的两类错误20两类错误与显著性水平研究者总是希望能做出正确的决策,但由于决策是建立在样本信息的基础之上,而样本又是随机的,因而就有可能犯错误原假设和备择假设不能同时成立,决策的结果要么拒绝H0,要么不拒绝H0。决策时总是希望当原假设正确时没有拒绝它,当原假设不正确时拒绝它,但实际上很难保证不犯错误第Ⅰ类错误(错误)—拒真错误原假设为正确时拒绝原假设第Ⅰ类错误的概率记为,被称为显著性水平第Ⅱ类错误(错误)—纳伪错误原假设为错误时未拒绝原假设第Ⅱ类错误的概率记为(Beta)两类错误与显著性水平研究者总是希望能做出正确的决策,但由于决21H0:无罪假设检验中的两类错误(决策结果)陪审团审判裁决实际情况无罪有罪无罪正确错误有罪错误正确H0检验决策实际情况H0为真H0为假未拒绝H0正确决策(1–a)第Ⅱ类错误(b)拒绝H0第Ⅰ类错误(a)正确决策(1-b)假设检验就好像一场审判过程统计检验过程H0:无罪假设检验中的两类错误陪审团审判裁决实际情况无罪有

错误和

错误的关系你要同时减少两类错误的惟一办法是增加样本容量!和的关系就像翘翘板,小就大,大就小错误和错误的关系你要同时减少两类错误的惟一办法23两类错误的控制一般来说,对于一个给定的样本,如果犯第Ι类错误的代价比犯第Ⅱ类错误的代价相对较高,则将犯第Ⅰ类错误的概率定得低些较为合理;反之,如果犯第Ⅰ类错误的代价比犯第Ⅱ类错误的代价相对较低,则将犯第Ⅰ类错误的概率定得高些一般来说,发生哪一类错误的后果更为严重,就应该首要控制哪类错误发生的概率。但由于犯第Ⅰ类错误的概率是可以由研究者控制的,因此在假设检验中,人们往往先控制第Ⅰ类错误的发生概率两类错误的控制一般来说,对于一个给定的样本,如果犯第Ι类错误24检验能力

(poweroftest)拒绝一个错误的原假设的能力根据的定义,是指没有拒绝一个错误的原假设的概率。这也就是说,1-则是指拒绝一个错误的原假设的概率,这个概率被称为检验能力,也被称为检验的势或检验的功效(power)可解释为正确地拒绝一个错误的原假设的概率检验能力

(poweroftest)拒绝一个错误的原假设25假设检验的流程提出假设确定适当的检验统计量规定显著性水平计算检验统计量的值作出统计决策假设检验的流程26什么是检验统计量?1.用于假设检验决策的统计量2.选择统计量的方法与参数估计相同,需考虑是大样本还是小样本总体方差已知还是未知3.检验统计量的基本形式为确定适当的检验统计量什么是检验统计量?确定适当的检验统计量27规定显著性水平

(significantlevel)什么是显著性水平?1. 是一个概率值2. 原假设为真时,拒绝原假设的概率被称为抽样分布的拒绝域3. 表示为(alpha)常用的值有0.01,0.05,0.104. 由研究者事先确定规定显著性水平

(significantlevel)28依据什么做出决策?若假设为H0:m=500,H1:m<500。样本均值为495,拒绝H0吗?样本均值为502,拒绝H0吗?做出拒绝或不拒绝原假设的依据是什么?传统上,做出决策所依据的是样本统计量,现代检验中人们直接使用由统计量算出的犯第Ⅰ类错误的概率,即所谓的P值依据什么做出决策?若假设为H0:m=500,H1:m<5029作出统计决策计算检验的统计量根据给定的显著性水平,查表得出相应的临界值z或z/2,t或t/2,F或F/2将检验统计量的值与水平的临界值进行比较得出拒绝或不拒绝原假设的结论作出统计决策计算检验的统计量30利用P值进行决策利用P值进行决策31检验统计量在零假设下,等于这个样本的数据实现值或更加极端值的概率称为p-值(p-value)。左侧检验时,P-值为曲线上方小于等于检验统计量部分的面积右侧检验时,P-值为曲线上方大于等于检验统计量部分的面积显然得到很小p-值意味着小概率事件发生了。如果小概率事件发生,是相信零假设,还是相信数据呢?当然是相信数据。于是就拒绝零假设。即,若p值<,拒绝H0。但事件概率小并不意味着不会发生,仅仅发生的概率很小罢了。用P值决策

(P-value)检验统计量在零假设下,等于这个样本的数据实现值或更加极端值的32双侧检验的P值/

2/

2Z拒绝拒绝H0值临界值计算出的样本统计量计算出的样本统计量临界值1/2P值1/2P值双侧检验的P值/2/2Z拒绝拒绝H0值临界值计33左侧检验的P值H0值临界值a样本统计量拒绝域抽样分布1-置信水平计算出的样本统计量P值左侧检验的P值H0值临界值a样本统计量拒绝域抽样分布1-34右侧检验的P值H0值临界值a拒绝域抽样分布1-置信水平计算出的样本统计量P值右侧检验的P值H0值临界值a拒绝域抽样分布1-置信水35利用P值进行检验

(决策准则)单侧检验若p-值>

,不拒绝H0若p-值<,拒绝H0双侧检验若p-值>

/2,不拒绝H0若p-值</2,拒绝H0利用P值进行检验

(决策准则)单侧检验36P值是关于数据的概率P值反映的是在某个总体的许多样本中某一类数据出现的经常程度,它是当原假设正确时,得到目前这个样本数据的概率比如,要检验全校学生的平均生活费支出是否等于500元,检验的假设为H0:=500;H1:500。假定抽出一个样本算出的样本均值600元,得到的值为P=0.02,这个0.02是指如果平均生活费支出真的是500元的话,那么,从该总体中抽出一个均值为600的样本的概率仅为0.02。如果你认为这个概率太小了,就可以拒绝原假设,因为如果原假设正确的话,几乎不可能抓到这样的一个样本,既然抓到了,就表明这样的样本不在少数,所以原假设是不对的p值越小,你拒绝原假设的理由就越充分P值是关于数据的概率P值反映的是在某个总体的许多样本中某一类37要证明原假设不正确,P值要多小,才能令人信服呢?原假设的可信度有多高?如果H0所代表的假设是人们多年来一直相信的,就需要很强的证据(小的P值)才能说服他们拒绝的结论是什么?如果拒绝H0而肯定H1

,你就需要有很强的证据显示要支持H1。比如,H1代表要花很多钱把产品包装改换成另一种包装,你就要有很强的证据显示新包装一定会增加销售量(因为拒绝H0要花很高的成本)多大的P值合适?要证明原假设不正确,P值要多小,才能令人信服呢?多大的P38实际上,计算机软件仅仅给出p-值,而不给出a。这有很多方便之处。比如a=0.05,而假定我们得到的p-值等于0.001。这时我们如果采用p-值作为新的显著性水平,即a=0.001,于是可以说,我们拒绝零假设,显著性水平为0.001。拒绝零假设时犯错误的概率实际只是千分之一而不是百分之五。在这个意义上,p-值又称为观测的显著性水平(observedsignificantlevel)。在统计软件输出p-值的位置,有的用“p-value”,有的用significant的缩写“Sig”就是这个道理。实际上,计算机软件仅仅给出p-值,而不给出a。这有很多方便之39关于“临界值”的注:作为概率的显著性水平a实际上相应于一个检验统计量取值范围的一个临界值(criticalvalue),a值定义为统计量取临界值或更极端的值的概率等于a。也就是说,“统计量的实现值比临界值更极端”等价于“p-值小于a”。使用临界值的概念进行的检验不计算p-值。只比较统计量的取值和临界值的大小。关于“临界值”的注:作为概率的显著性水平a实际上相应于一个检40使用临界值而不是p-值来判断拒绝与否是前计算机时代的产物。当时计算p-值不易,只有采用临界值的概念。但从给定的a求临界值同样也不容易,好在习惯上仅仅在教科书中列出相应于特定分布的几个有限的a临界值(比如a=0.05,a=0.025,a=0.01,a=0.005,a=0.001等等),或者根据分布表反过来查临界值(很不方便也很粗糙)。现在计算机软件都不给出a和临界值,但都给出p-值和统计量实现值,让用户自己决定显著性水平是多少。使用临界值而不是p-值来判断拒绝与否是前计算机时代的产物。当41拒绝H0P值决策与统计量的比较拒绝H0的两个统计量的不同显著性Z拒绝H00统计量1

P1

值统计量2

P2

值拒绝H0临界值拒绝H0P值决策与统计量的比较拒绝H0的两个统计量的不同显42双侧检验和单侧检验双侧检验和单侧检验43双侧检验与单侧检验

(假设的形式)假设研究的问题双侧检验左侧检验右侧检验H0m=m0m

m0m

m0H1m≠m0m<m0m>m0双侧检验与单侧检验

(假设的形式)假设研究的问题双侧检验左44双侧检验

(原假设与备择假设的确定)属于决策中的假设检验不论是大于还是小于,都必需采取相应的行动措施例如,某种零件的尺寸,要求其平均长度为10cm,大于或小于10cm均属于不合格我们想要证明(检验)大于或小于这两种可能性中的任何一种是否成立建立的原假设与备择假设应为

H0:

=10H1:

10双侧检验

(原假设与备择假设的确定)属于决策中的假设检验45双侧检验

(显著性水平与拒绝域)抽样分布H0值临界值临界值a/2a/2

样本统计量拒绝域拒绝域1-置信水平双侧检验

(显著性水平与拒绝域)抽样分布H0值临界值临界值46单侧检验

(显著性水平与拒绝域)H0值临界值a样本统计量拒绝域抽样分布1-置信水平单侧检验

(显著性水平与拒绝域)H0值临界值a样本统计量拒绝47假设检验不能证明原假设正确假设检验的目的主要是收集证据拒绝原假设,而支持你所倾向的备择假设假设检验只提供不利于原假设的证据。因此,当拒绝原假设时,表明样本提供的证据证明它是错误的,当没有拒绝原假设时,我们也没法证明它是正确的,因为假设检验的程序没有提供它正确的证据这与法庭上对被告的定罪类似:先假定被告是无罪的,直到你有足够的证据证明他是有罪的,否则法庭就不能认定被告有罪。当证据不足时,法庭的裁决是“被告无罪”,但这里也没有证明被告就是清白的假设检验不能证明原假设正确假设检验的目的主要是收集证据拒绝原48假设检验不能证明原假设正确假设检验得出的结论都是根据原假设进行阐述的我们要么拒绝原假设,要么不拒绝原假设当不能拒绝原假设时,我们也从来不说“接受原假设”,因为没有证明原假设是真的采用“接受”原假设的说法,则意味着你证明了原假设是正确的没有足够的证据拒绝原假设并不等于你已经“证明”了原假设是真的,它仅仅意味着目前还没有足够的证据拒绝原假设,只表示手头上这个样本提供的证据还不足以拒绝原假设“不拒绝”的表述方式实际上意味着没有得出明确的结论假设检验不能证明原假设正确假设检验得出的结论都是根据原假设进49假设检验不能证明原假设正确“接受”的说法有时会产生误导这种说法似乎暗示着原假设已经被证明是正确的了实事上,H0的真实值我们永远也无法知道,不知道真实值是什么,又怎么能证明它是什么?H0只是对总体真实值的一个假定值,由样本提供的信息也就自然无法证明它是否正确采用“不拒绝”的表述方法更合理一些,因为这种表述意味着样本提供的证据不够强大,因而没有足够的理由拒绝,这不等于已经证明原假设正确假设检验不能证明原假设正确“接受”的说法有时会产生误导50假设检验不能证明原假设正确假设检验不能证明原假设正确51假设检验不能证明原假设正确假设检验中通常是先确定显著性水平,这就等于控制了第Ι类错误的概率,但犯第Ⅱ类错误的概率却是不确定的在拒绝H0时,犯第Ⅰ类错误的概率不超过给定的显著性水平,当样本结果显示没有充分理由拒绝原假设时,也难以确切知道第Ⅱ类错误发生的概率采用“不拒绝”而不采用“接受”的表述方式,在多数场合下便避免了错误发生的风险因为“接受”所得结论可靠性将由第Ⅱ类错误的概率来测量,而的控制又相对复杂,有时甚至根本无法知道的值,除非你能确切给出

,否则就不宜表述成“接受”原假设假设检验不能证明原假设正确假设检验中通常是先确定显著性水平,52统计上显著不一定有实际意义当拒绝原假设时,我们称样本结果是统计上显著的(statisticallySignificant)当不拒绝原假设时,我们称样本结果是统计上不显著的在“显著”和“不显著”之间没有清楚的界限,只是在P值越来越小时,我们就有越来越强的证据,检验的结果也就越来越显著统计上显著不一定有实际意义当拒绝原假设时,我们称样本结果是统53“显著的”(Significant)一词的意义在这里并不是“重要的”,而是指“非偶然的”一项检验在统计上是“显著的”,意思是指:这样的(样本)结果不是偶然得到的,或者说,不是靠机遇能够得到的如果得到这样的样本概率(P)很小,则拒绝原假设在这么小的概率下竟然得到了这样的一个样本,表明这样的样本经常出现,所以,样本结果是显著的统计上显著不一定有实际意义“显著的”(Significant)一词的意义在这里并不是“54统计上显著不一定有实际意义在进行决策时,我们只能说P值越小,拒绝原假设的证据就越强,检验的结果也就越显著但P值很小而拒绝原假设时,并不一定意味着检验的结果就有实际意义因为假设检验中所说的“显著”仅仅是“统计意义上的显著”一个在统计上显著的结论在实际中却不见得就很重要,也不意味着就有实际意义因为P值与样本的大小密切相关,样本量越大,检验统计量的P值也就越大,P值就越小,就越有可能拒绝原假设统计上显著不一定有实际意义在进行决策时,我们只能说P值越小,55统计上显著不一定有实际意义如果你主观上要想拒绝原假设那就一定能拒绝它这类似于我们通常所说的“欲加之罪,何患无辞”只要你无限制扩大样本量,几乎总能拒绝原假设当样本量很大时,解释假设检验的结果需要小心在大样本情况下,总能把与假设值的任何细微差别都能查出来,即使这种差别几乎没有任何实际意义在实际检验中,不要刻意追求“统计上的”显著性,也不要把统计上的显著性与实际意义上的显著性混同起来一个在统计上显著的结论在实际中却不见得很重要,也不意味着就有实际意义统计上显著不一定有实际意义如果你主观上要想拒绝原假设那就一定566.2一个总体参数的检验

6.2.1总体均值的检验

6.2.2总体比例的检验

6.2.3总体方差的检验第6章假设检验6.2一个总体参数的检验第6章假设检验576.2.1总体均值的检验

(大样本)6.2一个总体参数的检验6.2.1总体均值的检验

(大样本)58总体均值的检验

(大样本)1.假定条件大样本(n30)2.使用z检验统计量2

已知:2

未知:总体均值的检验

(大样本)1.假定条件59总体均值的检验(2

已知)

(例题分析—大样本)【例6-4】一种罐装饮料采用自动生产线生产,每罐的容量是255ml,标准差为5ml。为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml。取显著性水平=0.05

,检验该天生产的饮料容量是否符合标准要求?双侧检验绿色健康饮品绿色健康饮品255255总体均值的检验(2已知)

(例题分析—大样本)【例6-总体均值的检验(2

已知)

(例题分析-大样本)H0

=255H1

255

=

0.05n

=

40临界值(c):检验统计量:决策:结论:

用Excel中的【NORMSDIST】函数得到的双尾检验P=0.312945不拒绝H0没有证据表明该天生产的饮料不符合标准要求

z01.96-1.960.005拒绝H0拒绝H00.005总体均值的检验(2已知)

(例题分析-大样本)H0:总体均值的检验(z检验)

(P值的计算与应用)第1步:进入Excel表格界面,直接点击【fx】第2步:在函数分类中点击【统计】,并在函数名菜单下选择【NORMSDIST】,然后【确定】第3步:将z的绝对值1.01录入,得到的函数值为

0.843752345

P值=2(1-0.843752345)=0.312495

P值远远大于,故不拒绝H0总体均值的检验(z检验)

(P值的计算与应用)第1步:总体均值的检验(2

未知)

(例题分析—大样本)【例6-5】一种机床加工的零件尺寸绝对平均误差为1.35mm。生产厂家现采用一种新的机床进行加工以期进一步降低误差。为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验。利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低?(=0.01)

左侧检验50个零件尺寸的误差数据(mm)1.261.191.310.971.811.130.961.061.000.940.981.101.121.031.161.121.120.951.021.131.230.741.500.500.590.991.451.241.012.031.981.970.911.221.061.111.541.081.101.641.702.371.381.601.261.171.121.230.820.86总体均值的检验(2未知)

(例题分析—大样本)【例6总体均值的检验

(例题分析—大样本)H0

1.35H1

<1.35

=

0.01n

=

50临界值(c):检验统计量:拒绝H0新机床加工的零件尺寸的平均误差与旧机床相比有显著降低决策:结论:-2.33z0拒绝H00.01总体均值的检验

(例题分析—大样本)H0:1.35检总体均值的检验

(P值的计算与应用—大样本)第1步:进入Excel表格界面,直接点击【fx】第2步:在函数分类中点击【统计】,并在函数名的菜单下选择【ZTEST】,然后【确定】第3步:在所出现的对话框【Array】框中,输入原始数据所在区域;在【X】后输入参数的某一假定值(这里为

1.35);在【Sigma】后输入已知的总体标准差(若总体标准差未知则可忽略不填,系统将自动使用样本标准差代替)第4步:用1减去得到的函数值0.995421023

即为P值

P值=1-0.995421023=0.004579

P值<=0.01,拒绝H0计算P值Excel总体均值的检验

(P值的计算与应用—大样本)第1步:进入总体均值的检验

(P值的图示)计算出的样本统计量=2.6061P=0.004579

Z拒绝H00临界值P值总体均值的检验

(P值的图示)计算出的样本统计量=2.666总体均值的检验(2

未知)

(例题分析)【例6-6】某一小麦品种的平均产量为5200kg/hm2

。一家研究机构对小麦品种进行了改良以期提高产量。为检验改良后的新品种产量是否有显著提高,随机抽取了36个地块进行试种,得到的样本平均产量为5275kg/hm2,标准差为120/hm2

。试检验改良后的新品种产量是否有显著提高?(=0.05)

右侧检验总体均值的检验(2未知)

(例题分析)【例6-6】某一总体均值的检验(2

未知)

(例题分析)H0

5200H1

>5200

=

0.05n

=

36临界值(c):检验统计量:拒绝H0(P=0.000088<

=0.05)改良后的新品种产量有显著提高决策:结论:z0拒绝H00.051.645总体均值的检验(2未知)

(例题分析)H0:5总体均值的检验(z检验)

(P值的图示)抽样分布P=0.000088

01.645a=0.05拒绝H01-计算出的样本统计量=3.75P值总体均值的检验(z检验)

(P值的图示)抽样分布P=69总体均值的检验

(小样本)1.假定条件总体服从正态分布小样本(n<

30)2.检验统计量2

已知:2

未知:总体均值的检验

(小样本)1.假定条件70总体均值的检验

(例题分析—小样本)【例6-7】一种汽车配件的平均长度要求为12cm,高于或低于该标准均被认为是不合格的。汽车生产企业在购进配件时,通常是经过招标,然后对中标的配件提供商提供的样品进行检验,以决定是否购进。现对一个配件提供商提供的10个样本进行了检验。假定该供货商生产的配件长度服从正态分布,在0.05的显著性水平下,检验该供货商提供的配件是否符合要求?10个零件尺寸的长度(cm)12.210.812.011.811.912.411.312.212.012.3总体均值的检验

(例题分析—小样本)【例6-7】一种汽车配总体均值的检验

(例题分析—小样本)H0

=12H1

12

=0.05df=10-1=9临界值(c):检验统计量:不拒绝H0没有证据表明该供货商提供的零件不符合要求

决策:结论:t02.262-2.2620.025拒绝

H0拒绝H00.025总体均值的检验

(例题分析—小样本)H0:=12检验总体均值的检验

(P值的计算与应用-t

检验)第1步:进入Excel表格界面,直接点击【fx】第2步:在函数分类中点击【统计】,并在函数名的菜单下选择【TDIST】,然后【确定】第3步:在出现对话框的【X】栏中输入计算出的t的绝对值0.7053,在【Deg-freedom】(自由度)栏中输入本例的自由度9,在【Tails】栏中输入2(表明是双侧检验,如果是单测检验则在该栏输入1)第4步:P值=0.498453

P值>=0.05,故不拒绝H0

总体均值的检验

(P值的计算与应用-t检验)第1步:进总体均值的检验

(用SPSS进行检验—小样本t检验)第1步:选择【Analyze】下拉菜单,并选择【CompareMeans—One-SamplesTTest】选项,进入主对话框第2步:将检验变量(零件长度)选入【TestVariable(s)】;在【TestValue】框内输入假设值(本题为12)第3步:点击【Options】,选择所需的置信水平(隐含值为95%)。点击【Continue】回到主对话框。点击【OK】用SPSS进行检验SPSS总体均值的检验

(用SPSS进行检验—小样本t检验)第1步74总体均值的检验

(用SPSS进行检验—小样本t检验)不拒绝H0。没有证据表明该供货商提供的零件不符合要求总体均值的检验

(用SPSS进行检验—小样本t检验)不拒绝75一个总体均值的检验

(作出判断)是否已知小样本量n大是否已知否t检验否z检验是z检验

是z检验一个总体均值的检验

(作出判断)是否已知小样本量n大766.2.2总体比例的检验6.2一个总体参数的检验6.2.2总体比例的检验6.2一个总体参数的检验77总体比例检验假定条件总体服从二项分布可用正态分布来近似(大样本)检验的z统计量0为假设的总体比例总体比例检验假定条件0为假设的总体比例78总体比例的检验

(例题分析)【例6-8】一种以休闲和娱乐为主题的杂志,声称其读者群中有80%为女性。为验证这一说法是否属实,某研究部门抽取了由200人组成的一个随机样本,发现有146个女性经常阅读该杂志。分别取显著性水平

=0.05和=0.01

,检验该杂志读者群中女性的比例是否为80%?它们的P值各是多少?双侧检验总体比例的检验

(例题分析)【例6-8】一种以休闲和娱乐为总体比例的检验

(例题分析)H0

=80%H1

80%

=0.05n

=200临界值(c):检验统计量:拒绝H0(P=0.013328<

=0.05)该杂志的说法并不属实

决策:结论:z01.96-1.960.025拒绝

H0拒绝

H00.025总体比例的检验

(例题分析)H0:=80%检验统计总体比例的检验

(例题分析)H0

=80%H1

80%

=0.01n

=200临界值(c):检验统计量:不拒绝H0(P=0.013328>=0.01)没有证据表明“该杂志声称读者群中有80%为女性”的看法不正确

决策:结论:z02.58-2.580.005拒绝H0拒绝H00.005总体比例的检验

(例题分析)H0:=80%检验统计6.2.3总体方差的检验6.2一个总体参数的检验6.2.3总体方差的检验6.2一个总体参数的检验82总体方差的检验

(2检验)

检验一个总体的方差或标准差假设总体近似服从正态分布使用2分布检验统计量假设的总体方差总体方差的检验

(2检验)检验一个总体的方差或标准差83总体方差的检验

(例题分析)【例6-9】啤酒生产企业采用自动生产线灌装啤酒,每瓶的装填量为640ml,但由于受某些不可控因素的影响,每瓶的装填量会有差异。此时,不仅每瓶的平均装填量很重要,装填量的方差同样很重要。如果方差很大,会出现装填量太多或太少的情况,这样要么生产企业不划算,要么消费者不满意。假定生产标准规定每瓶装填量的标准差不应超过4ml。企业质检部门抽取了10瓶啤酒进行检验,得到的样本标准差为s=3.8ml。试以0.05的显著性水平检验装填量的标准差是否符合要求?朝日BEER朝日BEER朝日BEER朝日总体方差的检验

(例题分析)【例6-9】啤酒生产企业采用自动总体方差的检验

(例题分析)H0

:2

42H1

:2

>42

=0.10df=

10-1=9临界值(s):统计量:不拒绝H0(p=0.52185)没有证据表明装填量的标准差不符合要求

2016.9190=0.05决策:结论:总体方差的检验

(例题分析)H0:242统计量:6.3两个总体参数的检验

6.3.1两个总体均值之差的检验

6.3.2两个总体比例之差的检验

6.3.3两个总体方差比的检验第6章假设检验6.3两个总体参数的检验第6章假设检验866.3.1两个总体均值之差的检验6.3两个总体参数的检验6.3.1两个总体均值之差的检验6.3两个总体参数87两个总体均值之差的检验

(独立大样本)1.假定条件两个样本是独立的随机样本正态总体或非正态总体大样本(n130和n230)2.检验统计量12

,22

已知:12

,22

未知:两个总体均值之差的检验

(独立大样本)1.假定条件88两个总体均值之差的检验

(例题分析—独立大样本)【例6-10】某公司对男女职员的平均小时工资进行了调查,独立抽取了具有同类工作经验的男女职员的两个随机样本,并记录下两个样本的均值、方差等资料如右表。在显著性水平为0.05的条件下,能否认为男性职员与女性职员的平均小时工资存在显著差异?

两个样本的有关数据

男性职员女性职员n1=44n1=32x1=75x2=70S12=64S22=42.25两个总体均值之差的检验

(例题分析—独立大样本)【例6-189两个总体均值之差的检验

(例题分析—独立大样本)H0

:1-2=0H1

:1-2

0

=

0.05n1

=44,n2

=32临界值(c):检验统计量:决策:结论:

拒绝H0该公司男女职员的平均小时工资之间存在显著差异

z01.96-1.960.025拒绝

H0拒绝

H00.025两个总体均值之差的检验

(例题分析—独立大样本)H0:两个总体均值之差的检验

(独立小样本:12,

22

已知)假定条件两个独立的小样本两个总体都是正态分布12,22已知检验统计量两个总体均值之差的检验

(独立小样本:12,2291两个总体均值之差的检验

(独立小样本:12,22

未知但12=22)假定条件两个独立的小样本两个总体都是正态分布12、22未知但相等,即12=22检验统计量其中:自由度:两个总体均值之差的检验

(独立小样本:12,22未知92两个总体均值之差的检验

(独立小样本:12,22

未知且不等1222)假定条件两个总体都是正态分布12,22未知且不相等,即1222样本量不相等,即n1n2检验统计量自由度:两个总体均值之差的检验

(独立小样本:12,22未知93两个总体均值之差的检验

(例题分析—独立小样本,12=22)【例6-11】甲、乙两台机床同时加工某种同类型的零件,已知两台机床加工的零件直径(单位:cm)分别服从正态分布,并且有12=22

。为比较两台机床的加工精度有无显著差异,分别独立抽取了甲机床加工的8个零件和乙机床加工的7个零件,通过测量得到如下数据。在=0.05的显著性水平下,样本数据是否提供证据支持

“两台机床加工的零件直径不一致”的看法?两台机床加工零件的样本数据

(cm)甲20.519.819.720.420.120.019.019.9乙20.719.819.520.820.419.620.2两个总体均值之差的检验

(例题分析—独立小样本,12=94两个总体均值之差的检验

(例题分析—12=22)H0

:1-2

=0H1

:1-2

0

=0.05n1

=8,n2

=

7临界值(c):检验统计量:决策:结论:

不拒绝H0没有证据表明两台机床加工的零件直径不一致t02.160-2.1600.025拒绝

H0拒绝H00.025两个总体均值之差的检验

(例题分析—12=22)H0两个总体均值之差的检验

(用Excel进行检验)第1步:将原始数据输入到Excel工作表格中第2步:选择【工具】下拉菜单并选择【数据分析】选项第3步:在【数据分析】对话框中选择

【t-检验:双样本等方差假设】第4步:当对话框出现后在【变量1的区域】方框中输入第1个样本的数据区域在【变量2的区域】方框中输入第2个样本的数据区域在【假设平均差】方框中输入假定的总体均值之差在【】方框中输入给定的显著性水平(本例为0.05)

在【输出选项】选择计算结果的输出位置,然后【确定】进行检验Excel两个总体均值之差的检验

(用Excel进行检验)第1步:将两个总体均值之差的检验

(用Excel进行检验)Excel的输出结果两个总体均值之差的检验

(用Excel进行检验)Excel两个总体均值之差的检验

(例题分析—独立小样本,1222)【例6-12】甲、乙两台机床同时加工某种同类型的零件,已知两台机床加工的零件直径(单位:cm)分别服从正态分布,并且有1222

。为比较两台机床的加工精度有无显著差异,分别独立抽取了甲机床加工的8个零件和乙机床加工的7个零件,通过测量得到如下数据。在=0.05的显著性水平下,样本数据是否提供证据支持

“两台机床加工的零件直径不一致”的看法?两台机床加工零件的样本数据

(cm)甲20.519.819.720.420.120.019.019.9乙20.719.819.520.820.419.620.2两个总体均值之差的检验

(例题分析—独立小样本,1298两个总体均值之差的检验

(用Excel进行检验)第1步:将原始数据输入到Excel工作表格中第2步:选择“工具”下拉菜单并选择【数据分析】选项第3步:在【数据分析】对话框中选择

【t-检验:双样本异方差假设】第4步:当对话框出现后在【变量1的区域】方框中输入第1个样本的数据区域在【变量2的区域】方框中输入第2个样本的数据区域在【假设平均差】方框中输入假定的总体均值之差在【】方框中输入给定的显著性水平(本例为0.05)

在【输出选项】选择计算结果的输出位置,然后【确定】进行检验Excel两个总体均值之差的检验

(用Excel进行检验)第1步:将两个总体均值之差的检验

(用Excel进行检验)Excel的输出结果两个总体均值之差的检验

(用Excel进行检验)Excel用SPSS进行检验

(独立小样本,12=22

;1222)在用SPSS中进行检验时,需要把两个样本的观测值作为一个变量输入(本例为“零件尺寸”),然后设计另一个变量用于标记每个观测值所属的样本(本例为“机床”,1表示机床1,2表示机床2)第1步:选择【Analyze】【CompareMeans—Independent-SamplesTTest】进入主对话框第2步:检验变量(零件尺寸)选入【TestVariable(s)】,将分组变量(机床)选入【GroupingVariable(s)】,并选择【DefineGroups】,在【Group1后输入1】,在【Group2后输入2】,点击【Continue】回到主对话框。点击【OK】进行检验SPSS用SPSS进行检验

(独立小样本,12=22;12两个总体均值之差的检验

(用SPSS进行检验)ESPSS的输出结果Levene‘sTestforEqualityofVariances:

检验两个总体方差相等的假设两个总体均值之差的检验

(用SPSS进行检验)ESPSS的两个总体均值之差的检验

(配对样本)假定条件两个总体配对差值构成的总体服从正态分布配对差是由差值总体中随机抽取的数据配对或匹配(重复测量(前/后))检验统计量样本差值均值样本差值标准差两个总体均值之差的检验

(配对样本)假定条件样本差值均值样本103匹配样本

(数据形式)

观察序号样本1样本2差值1x11x21d1=x11-x212x12x22d2=x12-x22MMMMix1ix2idi

=x1i

-x2iMMMMnx1nx2ndn

=x1n-x2n匹配样本

(数据形式)观察序号样本1样本2差值1x11x104两个总体均值之差的检验

(例题分析—配对样本)

【例6-13】某饮料公司开发研制出一新产品,为比较消费者对新老产品口感的满意程度,该公司随机抽选一组消费者(8人),每个消费者先品尝一种饮料,然后再品尝另一种饮料,两种饮料的品尝顺序是随机的,而后每个消费者要对两种饮料分别进行评分(0分~10分),评分结果如下表。取显著性水平=0.05,该公司是否有证据认为消费者对两种饮料的评分存在显著差异?两种饮料平均等级的样本数据旧饮料54735856新饮料66743976两个总体均值之差的检验

(例题分析—配对样本)【例6-1105两个总体均值之差的检验

(用Excel进行检验—配对样本)第1步:选择“工具”下拉菜单,并选择【数据分析】选项第3步:在分析工具中选择【t检验:平均值成对二样本分析】第4步:当出现对话框后

在【变量1的区域】方框内键入变量1的数据区域

在【变量2的区域】方框内键入变量2的数据区域

在【假设平均差】方框内键入假设的差值(这里为0)

在【】框内键入给定的显著性水平,然后【确定】

进行检验Excel两个总体均值之差的检验

(用Excel进行检验—配对样本)106配对总体均值之差的检验

(用Excel进行检验)Excel的输出结果配对总体均值之差的检验

(用Excel进行检验)Excel两个总体均值之差的检验

(用SPSS进行检验—配对样本)第1步:选择【Analyze】下拉菜单,并选择【CompareMeans—Paired-SamplesTTest】选项,进入主对话框第2步:将两个样本同时选入【PairedVariables】第3步:点击【Options】,选择所需的置信水平(隐含值为95%)。点击【Continue】回到主对话框。点击【OK】进行检验SPSS两个总体均值之差的检验

(用SPSS进行检验—配对样本)第108配对总体均值之差的检验

(用SPSS进行检验)SPSS的输出结果配对总体均值之差的检验

(用SPSS进行检验)SPSS的输两个总体均值之差的检验

(TTEST函数的应用

)函数语法:TTEST(array1,array2,tails,type)

说明:【Array1】为样本1的数据区域

【array2】为样本2的数据区域

【tails】表示分布曲线的尾数如果tails=1,返回分布的单尾概率如果tails=2,返回分布的双尾概率【type】为检验的类型1代表配对样本检验1代表双样本等方差假设3代表双样本异方差假设用TTEST进行检验Excel两个总体均值之差的检验

(TTEST函数的应用)函数语法110两个总体均值之差的检验

(方法总结)两个总体均值之差的检验

(方法总结)6.3.2两个比例均值之差的检验6.3两个总体参数的检验6.3.2两个比例均值之差的检验6.3两个总体参数1121.假定条件两个总体都服从二项分布可以用正态分布来近似2.检验统计量检验H0:1-2=0检验H0:1-2=d0两个总体比例之差的检验1.假定条件两个总体比例之差的检验113两个总体比例之差的检验

(例题分析)

【例6-14】一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法是否存在差异,分别抽取了200名男学生和200名女学生进行调查,其中的一个问题是:“你是否赞成采取上网收费的措施?”其中男学生表示赞成的比例为27%,女学生表示赞成的比例为35%。调查者认为,男学生中表示赞成的比例显著低于女学生。取显著性水平=0.05,样本提供的证据是否支持调查者的看法?21netnet两个总体比例之差的检验

(例题分析)【例6-14】一所大114两个总体比例之差的检验

(例题分析)H0

:1-2

0H1

:1-2<0

=

0.05n1=200,

n2=200临界值(c):检验统计量:决策:结论:

拒绝H0(P=0.041837<

=0.05)样本提供的证据支持调查者的看法

-1.645Z0拒绝域两个总体比例之差的检验

(例题分析)H0:1-2两个总体比例之差的检验

(例题分析)

【例6-15】有两种方法生产同一种产品,方法1的生产成本较高而次品率较低,方法2的生产成本较低而次品率则较高。管理人员在选择生产方法时,决定对两种方法的次品率进行比较,如方法1比方法2的次品率低8%以上,则决定采用方法1,否则就采用方法2。管理人员从方法1生产的产品中随机抽取300个,发现有33个次品,从方法2生产的产品中也随机抽取300个,发现有84个次品。用显著性水平=0.01进行检验,说明管理人员应决定采用哪种方法进行生产?两个总体比例之差的检验

(例题分析)【例6-15】有两种116两个总体比例之差的检验

(例题分析)H0

:2-18%H1

:2-1>8%

=

0.01n1=300,n2=300临界值(c):检验统计量:决策:结论:

拒绝H0(P

=1.22E-15<

=0.05)方法1的次品率显著低于方法2达8%,应采用方法1进行生产-2.33Z0拒绝域两个总体比例之差的检验

(例题分析)H0:2-16.3.3两个总体方差比的检验6.3两个总体参数的检验6.3.3两个总体方差比的检验6.3两个总体参数的118两个总体方差比的检验

(F

检验)假定条件两个总体都服从正态分布,且方差相等两个独立的随机样本检验统计量两个总体方差比的检验

(F检验)假定条件119两个总体方差比的检验

(图示)FF1-F总体方差比的1-的置信区间拒绝H0拒绝H0两个总体方差比的检验

(图示)FF1-F总体120两个总体方差比的检验

(例题分析)【例6-16】一家房地产开发公司准备购进一批灯泡,公司打算在两个供货商之间选择一家购买。这两家供货商生产的灯泡平均使用寿命差别不大,价格也很相近,考虑的主要因素就是灯泡使用寿命的方差大小。如果方差相同,就选择距离较近的一家供货商进货。为此,公司管理人员对两家供货商提供的样品进行了检测,得到的数据如右表。检验两家供货商灯泡使用寿命的方差是否有显著差异

(=0.05)

两家供货商灯泡使用寿命数据

样本1650569622630596637628706617624563580711480688723651569709632样本2568540596555496646607562589636529584681539617两个总体方差比的检验

(例题分析)【例6-16】一家房地产两个总体方差比的检验

(用Excel进行检验)第1步:选择“工具”下拉菜单,并选择【数据分析】第3步:在分析工具中选择【F-检验

双样本方差】第4步:当出现对话框后

在【变量1的区域】方框内键入数据区域

在【变量2的区域】方框内键入数据区域在【】框内键入给定的显著性水平选择输出区域选择【确定】进行检验Excel两个总体方差比的检验

(用Excel进行检验)第1步:选择122两个总体方差比的检验

(用Excel进行检验)Excel的输出结果

两个总体方差比的检验

(用Excel进行检验)Excel的123Excel中的统计函数ZTEST—计算Z检验的P值TDIST—计算t分布的概率TINV—计算t分布的临界值TTEST—计算t分布检验的P值FDIST—计算F分布的概率FINV—计算F分布的逆函数(临界值)FTEST—计算F检验(两个总体方差比的检验)单尾概率Excel中的统计函数ZTEST—计算Z检验的P值124本章小节总体参数检验一个总体两个总体均值比例方差均值差比例差方差比独立样本匹配样本大样本F检验Z检验大样本小样本Z检验1222已知1222未知Z检验t检验大样本小样本Z检验2已知Z检验2未知t检验Z检验卡方检验本章小节总体参数检验一个总体两个总体均值比例方差均值差比例差本章小节假设检验的基本原理一个总体参数的检验两个总体参数的检验用Excel进行检验利用P

值进行检验本章小节假设检验的基本原理结束THANKS结束THANKS1271、有时候读书是一种巧妙地避开思考的方法。12月-2212月-22Saturday,December10,20222、阅读一切好书如同和过去最杰出的人谈话。13:45:2013:45:2013:4512/10/20221:45:20PM3、越是没有本领的就越加自命不凡。12月-2213:45:2013:45Dec-2210-Dec-224、越是无能的人,越喜欢挑剔别人的错儿。13:45:2013:45:2013:45Saturday,December10,20225、知人者智,自知者明。胜人者有力,自胜者强。12月-2212月-2213:45:2013:45:20December10,20226、意志坚强的人能把世界放在手中像泥块一样任意揉捏。10十二月20221:45:20下午13:45:2012月-227、最具挑战性的挑战莫过于提升自我。。十二月221:45下午12月-2213:45December10,20228、业余生活要有意义,不要越轨。2022/12/1013:45:2013:45:2010December20229、一个人即使已登上顶峰,也仍要自强不息。1:45:20下午1:45下午13:45:2012月-2210、你要做多大的事情,就该承受多大的压力。12/10/20221:45:20PM13:45:2010-12月-2211、自己要先看得起自己,别人才会看得起你。12/10/20221:45PM12/10/20221:45PM12月-2212月-2212、这一秒不放弃,下一秒就会有希望。10-Dec-2210December202212月-2213、无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。Saturday,December10,202210-Dec-2212月-2214、我只是自己不放过自己而已,现在我不会再逼自己眷恋了。12月-2213:45:2010December202213:45谢谢大家1、有时候读书是一种巧妙地避开思考的方法。12月-2212月128StatisticsStatistics129假设检验在统计方法中的地位参数估计假设检验统计方法描述统计推断统计利用样本统计量去估计总体的参数假设总体参数,用样本信息去检验这个假设是否成立假设检验在统计方法中的地位参数估计假设检验统计方法描述统计推130第6章假设检验6.1

假设检验的基本问题6.2

一个总体参数的检验6.3

两个总体参数的检验6.4

检验问题的进一步说明第6章假设检验6.1假设检验的基本问题131学习目标了解假设检验的基本思想掌握假设检验的步骤对实际问题作假设检验利用P-值进行假设检验学习目标了解假设检验的基本思想132正常人的平均体温是37oC吗?当问起健康的成年人体温是多少时,多数人的回答是37oC,这似乎已经成了一种共识。下面是一个研究人员测量的50个健康成年人的体温数据37.136.936.937.136.436.936.636.236.736.937.636.737.336.936.436.137.136.636.536.737.136.236.337.536.937.036.736.937.037.136.637.236.436.637.336.137.137.036.636.936.737.236.337.136.736.837.037.036.137.0正常人的平均体温是37oC吗?当问起健康的成年人体温是多少正常人的平均体温是37oC吗?根据样本数据计算的平均值是36.8oC,标准差为0.36oC根据参数估计方法得到的健康成年人平均体温的95%的置信区间为(36.7,36.9)。研究人员发现这个区间内并没有包括37oC因此提出“不应该再把37oC作为正常人体温的一个有任何特定意义的概念”我们应该放弃“正常人的平均体温是37oC”这个共识吗?本章的内容就将提供一套标准统计程序来检验这样的观点正常人的平均体温是37oC吗?根据样本数据计算的平均值是36.1假设检验的基

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论