




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4讲
库存管理(II)第4讲
库存管理(II)1Multi-EchelonInventoryinSupplyChainMulti-EchelonInventoryinSup2TwoStageEchelonInventorySequentialstockingpointswithleveldemandTwo-stageprocessTwoStageEchelonInventorySeq3TwoStageEchelonInventoryTwo-stageprocess:
Alittlereflectionshowsthatatleastforthecaseofdeterministicdemanditneverwouldmakesensetohave beanythingbutanintegermultipleof.Therefore,wecanthinkoftwoalternativedecisionvariablesandwhere (4.1)
TwoStageEchelonInventoryTwo4TwoStageEchelonInventoryTwo-stageprocess: Thefirststagecost Thesecondstagecost
ThetotalcostTwoStageEchelonInventoryTwo5TwoStageEchelonInventoryTwo-stageprocess: Thewarehouseecheloninventoryisvaluedat whiletheretailerecheloninventoryisvaluedatonly
TwoStageEchelonInventoryTwo6TwoStageEchelonInventoryTwo-stageprocess:
Thetotalrelevant(setuppluscarrying)costsperunittimearegivenby =averagevalueofthewarehouseecheloninventory,inunits =averagevalueoftheretailerecheloninventory,inunits
TwoStageEchelonInventoryTwo7TwoStageEchelonInventoryTwo-stageprocess:
Substitutingfromequation(4.1)andnotingthattheechelonstocksfollowsawtoothpatterns,
TwoStageEchelonInventoryTwo8TwoStageEchelonInventorySelect(aninteger)andinordertominimizePartialderivationofTRCTwoStageEchelonInventorySel9TwoStageEchelonInventorySubstitutetheresultintothecostequationWerecognizethatthenthatminimizesthesimplerexpressionTwoStageEchelonInventorySub10TwoStageEchelonInventoryAconvenientwayistofirstsetwhichgivesThissolvesforTwoStageEchelonInventoryAc11TwoStageEchelonInventoryAscertainandwhereandarethetwointegerssurroundingtheWhichevergivesthelowervalueofFistheappropriatentouse(becausetheFfunctionisconvexinn).TwoStageEchelonInventoryAsc12TwoStageEchelonInventoryTwo-stageprocess:
Step1 Compute Step2 Ascertainthetwointegervalues,and,thatsurround.TwoStageEchelonInventoryTwo13TwoStageEchelonInventoryTwo-stageprocess:
Step3TwoStageEchelonInventoryTwo14TwoStageEchelonInventoryTwo-stageprocess:
Step4 Step5TwoStageEchelonInventoryTwo15TwoStageEchelonInventoryExample1:Letusconsideraparticularliquidproductthatafirmbuysinbulk,thenbreaksdownandrepackages. Sointhiscase,thewarehousecorrespondstotheinventorypriortotherepackagingoperation,andtheretailercorrespondstotheinventoryaftertherepackagingoperation. Thedemandforthisitemcanbeassumedtobeessentiallydeterministicandlevelatarateof1000litersperyear.TwoStageEchelonInventoryExa16TwoStageEchelonInventoryExample1:Theunitvalueofthebulkmaterialoris$1/liter,whilethevalueaddedbythetransforming(breakandpackage)operationis$4/liter.Thefixedcomponentofthepurchasecharge()is$10,whilethesetupcostforthebreakandrepackageoperation()is$15.Finally,theestimatedcarryingchargeis0.24$/$/yr.TwoStageEchelonInventoryExa17TwoStageEchelonInventoryExample1: Step1: Step2:TwoStageEchelonInventoryExa18TwoStageEchelonInventoryExample1:Step3:
thatis, Thus,usen=2.TwoStageEchelonInventoryExa19TwoStageEchelonInventoryExample:Step4:Step5:TwoStageEchelonInventoryExa20TwoStageEchelonInventoryExample1:Inotherwords,wepurchase334litersatatime;one-halfoftheseor167litersareimmediatelybrokenandrepackaged.Whenthese167(finished)litersaredepleted,asecondbreakandrepackagerunof167litersismade.Whenthesearedepleted,westartanewcyclebyagainpurchasing334litersofrawmaterial.TwoStageEchelonInventoryExa21InventoryControlwithUncertainDemandThedemandcanbedecomposedintotwoparts,where=Deterministiccomponentofdemandand=Randomcomponentofdemand.InventoryControlwithUncerta22InventoryControlwithUncertainDemand Thereareanumberofcircumstancesunderwhichitwouldbeappropriatetotreatasbeingdeterministiceventhoughisnotzero.Someoftheseare:Whenthevarianceoftherandomcomponent, issmallrelativetothemagnitudeof.Whenthepredictablevariationismoreimportantthantherandomvariation.Whentheproblemstructureistoocomplextoincludeanexplicitrepresentationofrandomnessinthemodel.InventoryControlwithUncerta23InventoryControlwithUncertainDemand However,formanyitems,therandomcomponentofthedemandistoosignificanttoignore. Aslongastheexpecteddemandperunittimeisrelativelyconstantandtheproblemstructurenottoocomplex,explicittreatmentofdemanduncertaintyisdesirable.InventoryControlwithUncerta24InventoryControlwithUncertainDemand
Example2:
AnewsstandpurchasesanumberofcopiesofTheComputerJournal.Theobserveddemandsduringeachofthelast52weekswere:InventoryControlwithUncerta25InventoryControlwithUncertainDemand
Example2:InventoryControlwithUncerta26InventoryControlwithUncertainDemand
Example2: EstimatetheprobabilitythatthenumberofcopiesoftheJournalsoldinanyweek. Theprobabilitythatdemandis10isestimatedtobe2/52=0.0385,andtheprobabilitythatthedemandis15is5/52=0.0962. Cumulativeprobabilitiescanalsobeestimatedinasimilarway. TheprobabilitythattherearenineorfewercopiesoftheJournalsoldinanyweekis(1+0+0+0+3+1+2+2+4+6)/52=19/52=0.3654.
InventoryControlwithUncerta27InventoryControlwithUncertainDemand
Wegenerallyapproximatethedemandhistoryusingacontinuousdistribution.
Byfar,themostpopulardistributionforinventoryapplicationsisthenormal.
Anormaldistributionisdeterminedbytwoparameters:themeanandthevariance
InventoryControlwithUncerta28InventoryControlwithUncertainDemand
Thesecanbeestimatedfromahistoryofdemandbythesamplemeanandthesamplevariance.InventoryControlwithUncerta29InventoryControlwithUncertainDemand
Thenormaldensityfunctionisgivenbytheformula
Wesubstituteastheestimatorforandastheestimatorfor.InventoryControlwithUncerta30InventoryControlwithUncertainDemand
InventoryControlwithUncerta31OptimizationCriterion
Ingeneral,optimizationinproductionproblemsmeansfindingacontrolrulethatachievesminimumcost. However,whendemandisrandom,thecostincurredisitselfrandom,anditisnolongerobviouswhattheoptimizationcriterionshouldbe. Virtuallyallofthestochasticoptimizationtechniquesappliedtoinventorycontrolassumethatthegoalistominimizeexpectedcosts.OptimizationCriterion 32TheNewsboyModel(ContinuousDemands) Thedemandisapproximatelynormallydistributedwithmean11.731andstandarddeviation4.74. Eachcopyispurchasedfor25centsandsoldfor75cents,andheispaid10centsforeachunsoldcopybyhissupplier. Oneobvioussolutionisapproximately12copies. SupposeMacpurchasesacopythathedoesn'tsell.Hisout-of-pocketexpenseis25cents10cents=15cents. Supposeontheotherhand,heisunabletomeetthedemandofacustomer.Inthatcase,heloses75cents25cents=50centsprofit.TheNewsboyModel(Continuous33TheNewsboyModel(ContinuousDemands)
Notation: =Costperunitofpositiveinventoryremainingattheendoftheperiod(knownastheoveragecost). =Costperunitofunsatisfieddemand.Thiscanbethoughtofasacostperunitofnegativeendinginventory(knownastheunderagecost). Thedemandisacontinuousnonnegativerandomvariablewithdensityfunctionandcumulativedistributionfunction.
Thedecisionvariableisthenumberofunitstobepurchasedatthebeginningoftheperiod.TheNewsboyModel(Continuous34TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:
Thecostfunction TheoptimalsolutionequationTheNewsboyModel(Continuous35TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:TheNewsboyModel(Continuous36TheNewsboyModel(ContinuousDemands)
Example2(continued):
Normallydistributedwithmean=11.73andstandarddeviation=4.74. SinceMacpurchasesthemagazinesfor25centsandcansalvageunsoldcopiesfor10cents,hisoveragecostis=2510=15cents. Hisunderagecostistheprofitoneachsale,sothat=7525=50cents.
TheNewsboyModel(Continuous37TheNewsboyModel(ContinuousDemands)
Example2(continued):
Thecriticalratiois=0.50/0.65=0.77. Purchaseenoughcopiestosatisfyalloftheweeklydemandwithprobability0.77.Theoptimalisthe77thpercentileofthedemanddistribution.
TheNewsboyModel(Continuous38TheNewsboyModel(ContinuousDemands)
Example2(continued):
TheNewsboyModel(Continuous39TheNewsboyModel(ContinuousDemands)
Example2(continued):
Usingthedataofthenormaldistributionweobtainastandardizedvalueof=0.74.Theoptimalis Hence,heshouldpurchase15copieseveryweek.TheNewsboyModel(Continuous40TheNewsboyModel(DiscreteDemands)
Optimalpolicyfordiscretedemand:
Theprocedureforfindingtheoptimalsolutiontothenewsboyproblemwhenthedemandisassumedtobediscreteisanaturalgeneralizationofthecontinuouscase.
Theoptimalsolutionprocedureistolocatethecriticalratiobetweentwovaluesofandchoosethecorrespondingtothehighervalue.ThatisTheNewsboyModel(DiscreteDe41TheNewsboyModel(DiscreteDemands)
Example2:
TheNewsboyModel(DiscreteDe42TheNewsboyModel(DiscreteDemands)
Example2:
Thecriticalratioforthisproblemwas0.77,whichcorrespondstoavalueofbetween=14and=15. Sinceweroundup,theoptimalsolutionis=15.Noticethatthisisexactlythesameorderquantityobtainedusingthenormalapproximation.
TheNewsboyModel(DiscreteDe43TheNewsboyModel(DiscreteDemands)
ExtensiontoIncludeStartingInventory: Theoptimalpolicywhenthereisastartinginventoryof is: Order if.Don'torderif.
Notethatshouldbeinterpretedastheorder-up-topointratherthantheorderquantitywhen.Itisalsoknownasatargetorbasestocklevel.TheNewsboyModel(DiscreteDe44MultiproductSystems ABCanalysis:Thetrade-offsbetweenthecostofcontrollingthesystemandthepotentialbenefitsthataccruefromthatcontrol.Inmultiproductinventorysystemsnotallproductsareequallyprofitable.Alargeportionofthetotaldollarvolumeofsalesisoftenaccountedforbyasmallnumberofinventoryitems.
MultiproductSystems ABCanaly45MultiproductSystems ABCanalysis:
MultiproductSystems ABCanaly46MultiproductSystems ABCanalysis:
SinceAitemsaccountforthelion'sshareoftheyearlyrevenue,theseitemsshouldbewatchedmostclosely. InventorylevelsforAitemsshouldbemonitoredcontinuously. Moresophisticatedforecastingproceduresmightbeusedandmorecarewouldbetakenintheestimationofthevariouscostparametersrequiredincalculatingoperatingpolicies.
MultiproductSystems ABCanaly47MultiproductSystems ABCanalysis:
ForBitemsinventoriescouldbereviewedperiodically,itemscouldbeorderedingroupsratherthanindividually,andsomewhatlesssophisticatedforecastingmethodscouldbeused.MultiproductSystems ABCanaly48MultiproductSystems ABCanalysis:TheminimumdegreeofcontrolwouldbeappliedtoCitems.ForveryinexpensiveCitemswithmoderatelevelsofdemand,largelotsizesarerecommendedtominimizethefrequencythattheseitemsareordered.ForexpensiveCitemswithverylowdemand,thebestpolicyisgenerallynottoholdanyinventory.Onewouldsimplyordertheseitemsastheyaredemanded.MultiproductSystems ABCanaly49LotSize-ReorderPointSystemsInwhatfollows,weassumethattheoperatingpolicyisoftheform.However,whengeneralizingtheEOQanalysistoallowforrandomdemand,wetreatandasindependentdecisionvariables.LotSize-ReorderPointSystems50LotSize-ReorderPointSystemsAssumptionsThesystemiscontinuous-reviewDemandisrandomandstationaryThereisafixedpositiveleadtimeforplacinganorderThefollowingcostsareassumedSetupcostat$perorder.Holdingcostat$perunitheldperyear.Proportionalordercostof$peritem.Stock-outcostof$perunitofunsatisfieddemandLotSize-ReorderPointSystems51LotSize-ReorderPointSystems
Describingdemand:
Thedemandduringtheleadtimeisacontinuousrandomvariablewithprobabilitydensityfunction(orpdf),andaccumulativedistributionfunction(orcdf) .Letandbethemeanandstandarddeviationofdemandduringleadtime.LotSize-ReorderPointSystems52LotSize-ReorderPointSystems
Decisionvariables:
Therearetwodecisionvariablesforthisproblem, and, where=thelotsizeororderquantityand =thereorderlevelinunitsofinventory.
LotSize-ReorderPointSystems53LotSize-ReorderPointSystems
Decisionvariables:LotSize-ReorderPointSystems54AdditionalDiscussionofPeriodic-ReviewSystems
Definetwonumbers,and,tobeusedasfollows: Whenthelevelofonhandinventoryislessthanorequalto,anorderforthedifferencebetweentheinventoryandisplaced. Ifisthestartinginventoryinanyperiod,thenthe policyis:If,order.If,don'torder.AdditionalDiscussionofPerio55AdditionalDiscussionofPeriodic-ReviewSystems
DeterminingoptimalvaluesofAdditionalDiscussionofPerio56第4讲
库存管理(II)第4讲
库存管理(II)57Multi-EchelonInventoryinSupplyChainMulti-EchelonInventoryinSup58TwoStageEchelonInventorySequentialstockingpointswithleveldemandTwo-stageprocessTwoStageEchelonInventorySeq59TwoStageEchelonInventoryTwo-stageprocess:
Alittlereflectionshowsthatatleastforthecaseofdeterministicdemanditneverwouldmakesensetohave beanythingbutanintegermultipleof.Therefore,wecanthinkoftwoalternativedecisionvariablesandwhere (4.1)
TwoStageEchelonInventoryTwo60TwoStageEchelonInventoryTwo-stageprocess: Thefirststagecost Thesecondstagecost
ThetotalcostTwoStageEchelonInventoryTwo61TwoStageEchelonInventoryTwo-stageprocess: Thewarehouseecheloninventoryisvaluedat whiletheretailerecheloninventoryisvaluedatonly
TwoStageEchelonInventoryTwo62TwoStageEchelonInventoryTwo-stageprocess:
Thetotalrelevant(setuppluscarrying)costsperunittimearegivenby =averagevalueofthewarehouseecheloninventory,inunits =averagevalueoftheretailerecheloninventory,inunits
TwoStageEchelonInventoryTwo63TwoStageEchelonInventoryTwo-stageprocess:
Substitutingfromequation(4.1)andnotingthattheechelonstocksfollowsawtoothpatterns,
TwoStageEchelonInventoryTwo64TwoStageEchelonInventorySelect(aninteger)andinordertominimizePartialderivationofTRCTwoStageEchelonInventorySel65TwoStageEchelonInventorySubstitutetheresultintothecostequationWerecognizethatthenthatminimizesthesimplerexpressionTwoStageEchelonInventorySub66TwoStageEchelonInventoryAconvenientwayistofirstsetwhichgivesThissolvesforTwoStageEchelonInventoryAc67TwoStageEchelonInventoryAscertainandwhereandarethetwointegerssurroundingtheWhichevergivesthelowervalueofFistheappropriatentouse(becausetheFfunctionisconvexinn).TwoStageEchelonInventoryAsc68TwoStageEchelonInventoryTwo-stageprocess:
Step1 Compute Step2 Ascertainthetwointegervalues,and,thatsurround.TwoStageEchelonInventoryTwo69TwoStageEchelonInventoryTwo-stageprocess:
Step3TwoStageEchelonInventoryTwo70TwoStageEchelonInventoryTwo-stageprocess:
Step4 Step5TwoStageEchelonInventoryTwo71TwoStageEchelonInventoryExample1:Letusconsideraparticularliquidproductthatafirmbuysinbulk,thenbreaksdownandrepackages. Sointhiscase,thewarehousecorrespondstotheinventorypriortotherepackagingoperation,andtheretailercorrespondstotheinventoryaftertherepackagingoperation. Thedemandforthisitemcanbeassumedtobeessentiallydeterministicandlevelatarateof1000litersperyear.TwoStageEchelonInventoryExa72TwoStageEchelonInventoryExample1:Theunitvalueofthebulkmaterialoris$1/liter,whilethevalueaddedbythetransforming(breakandpackage)operationis$4/liter.Thefixedcomponentofthepurchasecharge()is$10,whilethesetupcostforthebreakandrepackageoperation()is$15.Finally,theestimatedcarryingchargeis0.24$/$/yr.TwoStageEchelonInventoryExa73TwoStageEchelonInventoryExample1: Step1: Step2:TwoStageEchelonInventoryExa74TwoStageEchelonInventoryExample1:Step3:
thatis, Thus,usen=2.TwoStageEchelonInventoryExa75TwoStageEchelonInventoryExample:Step4:Step5:TwoStageEchelonInventoryExa76TwoStageEchelonInventoryExample1:Inotherwords,wepurchase334litersatatime;one-halfoftheseor167litersareimmediatelybrokenandrepackaged.Whenthese167(finished)litersaredepleted,asecondbreakandrepackagerunof167litersismade.Whenthesearedepleted,westartanewcyclebyagainpurchasing334litersofrawmaterial.TwoStageEchelonInventoryExa77InventoryControlwithUncertainDemandThedemandcanbedecomposedintotwoparts,where=Deterministiccomponentofdemandand=Randomcomponentofdemand.InventoryControlwithUncerta78InventoryControlwithUncertainDemand Thereareanumberofcircumstancesunderwhichitwouldbeappropriatetotreatasbeingdeterministiceventhoughisnotzero.Someoftheseare:Whenthevarianceoftherandomcomponent, issmallrelativetothemagnitudeof.Whenthepredictablevariationismoreimportantthantherandomvariation.Whentheproblemstructureistoocomplextoincludeanexplicitrepresentationofrandomnessinthemodel.InventoryControlwithUncerta79InventoryControlwithUncertainDemand However,formanyitems,therandomcomponentofthedemandistoosignificanttoignore. Aslongastheexpecteddemandperunittimeisrelativelyconstantandtheproblemstructurenottoocomplex,explicittreatmentofdemanduncertaintyisdesirable.InventoryControlwithUncerta80InventoryControlwithUncertainDemand
Example2:
AnewsstandpurchasesanumberofcopiesofTheComputerJournal.Theobserveddemandsduringeachofthelast52weekswere:InventoryControlwithUncerta81InventoryControlwithUncertainDemand
Example2:InventoryControlwithUncerta82InventoryControlwithUncertainDemand
Example2: EstimatetheprobabilitythatthenumberofcopiesoftheJournalsoldinanyweek. Theprobabilitythatdemandis10isestimatedtobe2/52=0.0385,andtheprobabilitythatthedemandis15is5/52=0.0962. Cumulativeprobabilitiescanalsobeestimatedinasimilarway. TheprobabilitythattherearenineorfewercopiesoftheJournalsoldinanyweekis(1+0+0+0+3+1+2+2+4+6)/52=19/52=0.3654.
InventoryControlwithUncerta83InventoryControlwithUncertainDemand
Wegenerallyapproximatethedemandhistoryusingacontinuousdistribution.
Byfar,themostpopulardistributionforinventoryapplicationsisthenormal.
Anormaldistributionisdeterminedbytwoparameters:themeanandthevariance
InventoryControlwithUncerta84InventoryControlwithUncertainDemand
Thesecanbeestimatedfromahistoryofdemandbythesamplemeanandthesamplevariance.InventoryControlwithUncerta85InventoryControlwithUncertainDemand
Thenormaldensityfunctionisgivenbytheformula
Wesubstituteastheestimatorforandastheestimatorfor.InventoryControlwithUncerta86InventoryControlwithUncertainDemand
InventoryControlwithUncerta87OptimizationCriterion
Ingeneral,optimizationinproductionproblemsmeansfindingacontrolrulethatachievesminimumcost. However,whendemandisrandom,thecostincurredisitselfrandom,anditisnolongerobviouswhattheoptimizationcriterionshouldbe. Virtuallyallofthestochasticoptimizationtechniquesappliedtoinventorycontrolassumethatthegoalistominimizeexpectedcosts.OptimizationCriterion 88TheNewsboyModel(ContinuousDemands) Thedemandisapproximatelynormallydistributedwithmean11.731andstandarddeviation4.74. Eachcopyispurchasedfor25centsandsoldfor75cents,andheispaid10centsforeachunsoldcopybyhissupplier. Oneobvioussolutionisapproximately12copies. SupposeMacpurchasesacopythathedoesn'tsell.Hisout-of-pocketexpenseis25cents10cents=15cents. Supposeontheotherhand,heisunabletomeetthedemandofacustomer.Inthatcase,heloses75cents25cents=50centsprofit.TheNewsboyModel(Continuous89TheNewsboyModel(ContinuousDemands)
Notation: =Costperunitofpositiveinventoryremainingattheendoftheperiod(knownastheoveragecost). =Costperunitofunsatisfieddemand.Thiscanbethoughtofasacostperunitofnegativeendinginventory(knownastheunderagecost). Thedemandisacontinuousnonnegativerandomvariablewithdensityfunctionandcumulativedistributionfunction.
Thedecisionvariableisthenumberofunitstobepurchasedatthebeginningoftheperiod.TheNewsboyModel(Continuous90TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:
Thecostfunction TheoptimalsolutionequationTheNewsboyModel(Continuous91TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:TheNewsboyModel(Continuous92TheNewsboyModel(ContinuousDemands)
Example2(continued):
Normallydistributedwithmean=11.73andstandarddeviation=4.74. SinceMacpurchasesthemagazinesfor25centsandcansalvageunsoldcopiesfor10cents,hisoveragecostis=2510=15cents. Hisunderagecostistheprofitoneachsale,sothat=7525=50cents.
TheNewsboyModel(Continuous93TheNewsboyModel(ContinuousDemands)
Example2(continued):
Thecriticalratiois=0.50/0.65=0.77. Purchaseenoughcopiestosatisfyalloftheweeklydemandwithprobability0.77.Theoptimalisthe77thpercentileofthedemanddistribution.
TheNewsboyModel(Continuous94TheNewsboyModel(ContinuousDemands)
Example2(continued):
TheNewsboyModel(Continuous95TheNewsboyModel(ContinuousDemands)
Example2(continued):
Usingthedataofthenormaldistributionweobtainastandardizedvalueof=0.74.Theoptimalis Hence,heshouldpurchase15copieseveryweek.TheNewsboyModel(Continuous96TheNewsboyModel(DiscreteDemands)
Optimalpolicyfordiscretedemand:
Theprocedureforfindingtheoptimalsolutiontothenewsboyproblemwhenthedemandisassumedtobediscreteisanaturalgeneralizationofthecontinuouscase.
Theoptimalsolutionprocedureistolocatethecriticalratiobetweentwovaluesofandchoosethecorrespondingtothehighervalue.ThatisTheNewsboyModel(DiscreteDe97TheNewsboyModel(DiscreteDemands)
Example2:
TheNewsboyModel(DiscreteDe98TheNewsboyModel(DiscreteDemands)
Example2:
Thecriticalratioforthisproblemwas0.77,whichcorrespondstoavalueofbetween=14and=15. Sinceweroundup,theoptimalsolutionis=15.Noticethatthisisexactlythesameorderquantityobtainedusingthenormalapproximation.
TheNewsboyModel(DiscreteDe99TheNewsboyModel(DiscreteDemands)
ExtensiontoIncludeStartingInventory: Theoptimalpolicywhenthereisastartinginventoryof is: Order if.Don'torderif.
Notethatshouldbeinterpretedastheorder-up-topointratherthantheorderquantitywhen.Itisalsoknownasatargetorbasestocklevel.TheNewsboyModel(DiscreteDe100MultiproductSystems ABCanalysis:Thetrade-offsbetweenthecostofcontrollingthesystemandthepotentialbenefitsthataccruefromthatcontrol.Inmultiproductinventorysystemsnotallproductsareequallyprofitable.Alargeportionofthetotaldollarvolumeofsalesisoftenaccountedforbyasmallnumberofinventoryitems.
MultiproductSystems ABCanaly101MultiproductSystems ABCanalysis:
MultiproductSystems ABCanaly102MultiproductSystems ABCanalysis:
SinceAitemsaccountforthelion'sshareoftheyearlyrevenue,theseitemsshouldbewatchedmostclosely. InventorylevelsforAitemsshouldbemonitoredcontinu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技助力下的班级管理创新实践
- 科技引领教育变革跨学科整合的实践与思考
- 科技产业电商平台的建设与运营
- 科技创新背景下的新兴商业模式研究
- 知识产权侵权行为的行政处罚与法律救济
- LED屏幕销售合同
- 2025年光纤通信网络建设监理合同
- 2025年写字楼租赁合同范文转让合同范例
- 2025年企业市场营销合作合同模板
- 2025年人才共享协议
- 2025年山东泰山财产保险股份有限公司招聘笔试参考题库含答案解析
- 初中物理竞赛及自主招生讲义:第7讲 密度、压强与浮力(共5节)含解析
- 高中主题班会 梁文锋和他的DeepSeek-由DeepSeek爆火开启高中第一课-高中主题班会课件
- 污水处理设施运维服务投标方案(技术标)
- 一年级下册书法教案 (一)
- 《浙江省应急管理行政处罚裁量基准适用细则》知识培训
- 2024年全国职业院校技能大赛高职组(康复治疗技术赛项)考试题库(含答案)
- 2025年山东健康集团招聘笔试参考题库含答案解析
- 《中外广播电视史》课件
- 微信公众号运营
- DLT 593-2016 高压开关设备和控制设备
评论
0/150
提交评论