版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4讲
库存管理(II)第4讲
库存管理(II)1Multi-EchelonInventoryinSupplyChainMulti-EchelonInventoryinSup2TwoStageEchelonInventorySequentialstockingpointswithleveldemandTwo-stageprocessTwoStageEchelonInventorySeq3TwoStageEchelonInventoryTwo-stageprocess:
Alittlereflectionshowsthatatleastforthecaseofdeterministicdemanditneverwouldmakesensetohave beanythingbutanintegermultipleof.Therefore,wecanthinkoftwoalternativedecisionvariablesandwhere (4.1)
TwoStageEchelonInventoryTwo4TwoStageEchelonInventoryTwo-stageprocess: Thefirststagecost Thesecondstagecost
ThetotalcostTwoStageEchelonInventoryTwo5TwoStageEchelonInventoryTwo-stageprocess: Thewarehouseecheloninventoryisvaluedat whiletheretailerecheloninventoryisvaluedatonly
TwoStageEchelonInventoryTwo6TwoStageEchelonInventoryTwo-stageprocess:
Thetotalrelevant(setuppluscarrying)costsperunittimearegivenby =averagevalueofthewarehouseecheloninventory,inunits =averagevalueoftheretailerecheloninventory,inunits
TwoStageEchelonInventoryTwo7TwoStageEchelonInventoryTwo-stageprocess:
Substitutingfromequation(4.1)andnotingthattheechelonstocksfollowsawtoothpatterns,
TwoStageEchelonInventoryTwo8TwoStageEchelonInventorySelect(aninteger)andinordertominimizePartialderivationofTRCTwoStageEchelonInventorySel9TwoStageEchelonInventorySubstitutetheresultintothecostequationWerecognizethatthenthatminimizesthesimplerexpressionTwoStageEchelonInventorySub10TwoStageEchelonInventoryAconvenientwayistofirstsetwhichgivesThissolvesforTwoStageEchelonInventoryAc11TwoStageEchelonInventoryAscertainandwhereandarethetwointegerssurroundingtheWhichevergivesthelowervalueofFistheappropriatentouse(becausetheFfunctionisconvexinn).TwoStageEchelonInventoryAsc12TwoStageEchelonInventoryTwo-stageprocess:
Step1 Compute Step2 Ascertainthetwointegervalues,and,thatsurround.TwoStageEchelonInventoryTwo13TwoStageEchelonInventoryTwo-stageprocess:
Step3TwoStageEchelonInventoryTwo14TwoStageEchelonInventoryTwo-stageprocess:
Step4 Step5TwoStageEchelonInventoryTwo15TwoStageEchelonInventoryExample1:Letusconsideraparticularliquidproductthatafirmbuysinbulk,thenbreaksdownandrepackages. Sointhiscase,thewarehousecorrespondstotheinventorypriortotherepackagingoperation,andtheretailercorrespondstotheinventoryaftertherepackagingoperation. Thedemandforthisitemcanbeassumedtobeessentiallydeterministicandlevelatarateof1000litersperyear.TwoStageEchelonInventoryExa16TwoStageEchelonInventoryExample1:Theunitvalueofthebulkmaterialoris$1/liter,whilethevalueaddedbythetransforming(breakandpackage)operationis$4/liter.Thefixedcomponentofthepurchasecharge()is$10,whilethesetupcostforthebreakandrepackageoperation()is$15.Finally,theestimatedcarryingchargeis0.24$/$/yr.TwoStageEchelonInventoryExa17TwoStageEchelonInventoryExample1: Step1: Step2:TwoStageEchelonInventoryExa18TwoStageEchelonInventoryExample1:Step3:
thatis, Thus,usen=2.TwoStageEchelonInventoryExa19TwoStageEchelonInventoryExample:Step4:Step5:TwoStageEchelonInventoryExa20TwoStageEchelonInventoryExample1:Inotherwords,wepurchase334litersatatime;one-halfoftheseor167litersareimmediatelybrokenandrepackaged.Whenthese167(finished)litersaredepleted,asecondbreakandrepackagerunof167litersismade.Whenthesearedepleted,westartanewcyclebyagainpurchasing334litersofrawmaterial.TwoStageEchelonInventoryExa21InventoryControlwithUncertainDemandThedemandcanbedecomposedintotwoparts,where=Deterministiccomponentofdemandand=Randomcomponentofdemand.InventoryControlwithUncerta22InventoryControlwithUncertainDemand Thereareanumberofcircumstancesunderwhichitwouldbeappropriatetotreatasbeingdeterministiceventhoughisnotzero.Someoftheseare:Whenthevarianceoftherandomcomponent, issmallrelativetothemagnitudeof.Whenthepredictablevariationismoreimportantthantherandomvariation.Whentheproblemstructureistoocomplextoincludeanexplicitrepresentationofrandomnessinthemodel.InventoryControlwithUncerta23InventoryControlwithUncertainDemand However,formanyitems,therandomcomponentofthedemandistoosignificanttoignore. Aslongastheexpecteddemandperunittimeisrelativelyconstantandtheproblemstructurenottoocomplex,explicittreatmentofdemanduncertaintyisdesirable.InventoryControlwithUncerta24InventoryControlwithUncertainDemand
Example2:
AnewsstandpurchasesanumberofcopiesofTheComputerJournal.Theobserveddemandsduringeachofthelast52weekswere:InventoryControlwithUncerta25InventoryControlwithUncertainDemand
Example2:InventoryControlwithUncerta26InventoryControlwithUncertainDemand
Example2: EstimatetheprobabilitythatthenumberofcopiesoftheJournalsoldinanyweek. Theprobabilitythatdemandis10isestimatedtobe2/52=0.0385,andtheprobabilitythatthedemandis15is5/52=0.0962. Cumulativeprobabilitiescanalsobeestimatedinasimilarway. TheprobabilitythattherearenineorfewercopiesoftheJournalsoldinanyweekis(1+0+0+0+3+1+2+2+4+6)/52=19/52=0.3654.
InventoryControlwithUncerta27InventoryControlwithUncertainDemand
Wegenerallyapproximatethedemandhistoryusingacontinuousdistribution.
Byfar,themostpopulardistributionforinventoryapplicationsisthenormal.
Anormaldistributionisdeterminedbytwoparameters:themeanandthevariance
InventoryControlwithUncerta28InventoryControlwithUncertainDemand
Thesecanbeestimatedfromahistoryofdemandbythesamplemeanandthesamplevariance.InventoryControlwithUncerta29InventoryControlwithUncertainDemand
Thenormaldensityfunctionisgivenbytheformula
Wesubstituteastheestimatorforandastheestimatorfor.InventoryControlwithUncerta30InventoryControlwithUncertainDemand
InventoryControlwithUncerta31OptimizationCriterion
Ingeneral,optimizationinproductionproblemsmeansfindingacontrolrulethatachievesminimumcost. However,whendemandisrandom,thecostincurredisitselfrandom,anditisnolongerobviouswhattheoptimizationcriterionshouldbe. Virtuallyallofthestochasticoptimizationtechniquesappliedtoinventorycontrolassumethatthegoalistominimizeexpectedcosts.OptimizationCriterion 32TheNewsboyModel(ContinuousDemands) Thedemandisapproximatelynormallydistributedwithmean11.731andstandarddeviation4.74. Eachcopyispurchasedfor25centsandsoldfor75cents,andheispaid10centsforeachunsoldcopybyhissupplier. Oneobvioussolutionisapproximately12copies. SupposeMacpurchasesacopythathedoesn'tsell.Hisout-of-pocketexpenseis25cents10cents=15cents. Supposeontheotherhand,heisunabletomeetthedemandofacustomer.Inthatcase,heloses75cents25cents=50centsprofit.TheNewsboyModel(Continuous33TheNewsboyModel(ContinuousDemands)
Notation: =Costperunitofpositiveinventoryremainingattheendoftheperiod(knownastheoveragecost). =Costperunitofunsatisfieddemand.Thiscanbethoughtofasacostperunitofnegativeendinginventory(knownastheunderagecost). Thedemandisacontinuousnonnegativerandomvariablewithdensityfunctionandcumulativedistributionfunction.
Thedecisionvariableisthenumberofunitstobepurchasedatthebeginningoftheperiod.TheNewsboyModel(Continuous34TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:
Thecostfunction TheoptimalsolutionequationTheNewsboyModel(Continuous35TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:TheNewsboyModel(Continuous36TheNewsboyModel(ContinuousDemands)
Example2(continued):
Normallydistributedwithmean=11.73andstandarddeviation=4.74. SinceMacpurchasesthemagazinesfor25centsandcansalvageunsoldcopiesfor10cents,hisoveragecostis=2510=15cents. Hisunderagecostistheprofitoneachsale,sothat=7525=50cents.
TheNewsboyModel(Continuous37TheNewsboyModel(ContinuousDemands)
Example2(continued):
Thecriticalratiois=0.50/0.65=0.77. Purchaseenoughcopiestosatisfyalloftheweeklydemandwithprobability0.77.Theoptimalisthe77thpercentileofthedemanddistribution.
TheNewsboyModel(Continuous38TheNewsboyModel(ContinuousDemands)
Example2(continued):
TheNewsboyModel(Continuous39TheNewsboyModel(ContinuousDemands)
Example2(continued):
Usingthedataofthenormaldistributionweobtainastandardizedvalueof=0.74.Theoptimalis Hence,heshouldpurchase15copieseveryweek.TheNewsboyModel(Continuous40TheNewsboyModel(DiscreteDemands)
Optimalpolicyfordiscretedemand:
Theprocedureforfindingtheoptimalsolutiontothenewsboyproblemwhenthedemandisassumedtobediscreteisanaturalgeneralizationofthecontinuouscase.
Theoptimalsolutionprocedureistolocatethecriticalratiobetweentwovaluesofandchoosethecorrespondingtothehighervalue.ThatisTheNewsboyModel(DiscreteDe41TheNewsboyModel(DiscreteDemands)
Example2:
TheNewsboyModel(DiscreteDe42TheNewsboyModel(DiscreteDemands)
Example2:
Thecriticalratioforthisproblemwas0.77,whichcorrespondstoavalueofbetween=14and=15. Sinceweroundup,theoptimalsolutionis=15.Noticethatthisisexactlythesameorderquantityobtainedusingthenormalapproximation.
TheNewsboyModel(DiscreteDe43TheNewsboyModel(DiscreteDemands)
ExtensiontoIncludeStartingInventory: Theoptimalpolicywhenthereisastartinginventoryof is: Order if.Don'torderif.
Notethatshouldbeinterpretedastheorder-up-topointratherthantheorderquantitywhen.Itisalsoknownasatargetorbasestocklevel.TheNewsboyModel(DiscreteDe44MultiproductSystems ABCanalysis:Thetrade-offsbetweenthecostofcontrollingthesystemandthepotentialbenefitsthataccruefromthatcontrol.Inmultiproductinventorysystemsnotallproductsareequallyprofitable.Alargeportionofthetotaldollarvolumeofsalesisoftenaccountedforbyasmallnumberofinventoryitems.
MultiproductSystems ABCanaly45MultiproductSystems ABCanalysis:
MultiproductSystems ABCanaly46MultiproductSystems ABCanalysis:
SinceAitemsaccountforthelion'sshareoftheyearlyrevenue,theseitemsshouldbewatchedmostclosely. InventorylevelsforAitemsshouldbemonitoredcontinuously. Moresophisticatedforecastingproceduresmightbeusedandmorecarewouldbetakenintheestimationofthevariouscostparametersrequiredincalculatingoperatingpolicies.
MultiproductSystems ABCanaly47MultiproductSystems ABCanalysis:
ForBitemsinventoriescouldbereviewedperiodically,itemscouldbeorderedingroupsratherthanindividually,andsomewhatlesssophisticatedforecastingmethodscouldbeused.MultiproductSystems ABCanaly48MultiproductSystems ABCanalysis:TheminimumdegreeofcontrolwouldbeappliedtoCitems.ForveryinexpensiveCitemswithmoderatelevelsofdemand,largelotsizesarerecommendedtominimizethefrequencythattheseitemsareordered.ForexpensiveCitemswithverylowdemand,thebestpolicyisgenerallynottoholdanyinventory.Onewouldsimplyordertheseitemsastheyaredemanded.MultiproductSystems ABCanaly49LotSize-ReorderPointSystemsInwhatfollows,weassumethattheoperatingpolicyisoftheform.However,whengeneralizingtheEOQanalysistoallowforrandomdemand,wetreatandasindependentdecisionvariables.LotSize-ReorderPointSystems50LotSize-ReorderPointSystemsAssumptionsThesystemiscontinuous-reviewDemandisrandomandstationaryThereisafixedpositiveleadtimeforplacinganorderThefollowingcostsareassumedSetupcostat$perorder.Holdingcostat$perunitheldperyear.Proportionalordercostof$peritem.Stock-outcostof$perunitofunsatisfieddemandLotSize-ReorderPointSystems51LotSize-ReorderPointSystems
Describingdemand:
Thedemandduringtheleadtimeisacontinuousrandomvariablewithprobabilitydensityfunction(orpdf),andaccumulativedistributionfunction(orcdf) .Letandbethemeanandstandarddeviationofdemandduringleadtime.LotSize-ReorderPointSystems52LotSize-ReorderPointSystems
Decisionvariables:
Therearetwodecisionvariablesforthisproblem, and, where=thelotsizeororderquantityand =thereorderlevelinunitsofinventory.
LotSize-ReorderPointSystems53LotSize-ReorderPointSystems
Decisionvariables:LotSize-ReorderPointSystems54AdditionalDiscussionofPeriodic-ReviewSystems
Definetwonumbers,and,tobeusedasfollows: Whenthelevelofonhandinventoryislessthanorequalto,anorderforthedifferencebetweentheinventoryandisplaced. Ifisthestartinginventoryinanyperiod,thenthe policyis:If,order.If,don'torder.AdditionalDiscussionofPerio55AdditionalDiscussionofPeriodic-ReviewSystems
DeterminingoptimalvaluesofAdditionalDiscussionofPerio56第4讲
库存管理(II)第4讲
库存管理(II)57Multi-EchelonInventoryinSupplyChainMulti-EchelonInventoryinSup58TwoStageEchelonInventorySequentialstockingpointswithleveldemandTwo-stageprocessTwoStageEchelonInventorySeq59TwoStageEchelonInventoryTwo-stageprocess:
Alittlereflectionshowsthatatleastforthecaseofdeterministicdemanditneverwouldmakesensetohave beanythingbutanintegermultipleof.Therefore,wecanthinkoftwoalternativedecisionvariablesandwhere (4.1)
TwoStageEchelonInventoryTwo60TwoStageEchelonInventoryTwo-stageprocess: Thefirststagecost Thesecondstagecost
ThetotalcostTwoStageEchelonInventoryTwo61TwoStageEchelonInventoryTwo-stageprocess: Thewarehouseecheloninventoryisvaluedat whiletheretailerecheloninventoryisvaluedatonly
TwoStageEchelonInventoryTwo62TwoStageEchelonInventoryTwo-stageprocess:
Thetotalrelevant(setuppluscarrying)costsperunittimearegivenby =averagevalueofthewarehouseecheloninventory,inunits =averagevalueoftheretailerecheloninventory,inunits
TwoStageEchelonInventoryTwo63TwoStageEchelonInventoryTwo-stageprocess:
Substitutingfromequation(4.1)andnotingthattheechelonstocksfollowsawtoothpatterns,
TwoStageEchelonInventoryTwo64TwoStageEchelonInventorySelect(aninteger)andinordertominimizePartialderivationofTRCTwoStageEchelonInventorySel65TwoStageEchelonInventorySubstitutetheresultintothecostequationWerecognizethatthenthatminimizesthesimplerexpressionTwoStageEchelonInventorySub66TwoStageEchelonInventoryAconvenientwayistofirstsetwhichgivesThissolvesforTwoStageEchelonInventoryAc67TwoStageEchelonInventoryAscertainandwhereandarethetwointegerssurroundingtheWhichevergivesthelowervalueofFistheappropriatentouse(becausetheFfunctionisconvexinn).TwoStageEchelonInventoryAsc68TwoStageEchelonInventoryTwo-stageprocess:
Step1 Compute Step2 Ascertainthetwointegervalues,and,thatsurround.TwoStageEchelonInventoryTwo69TwoStageEchelonInventoryTwo-stageprocess:
Step3TwoStageEchelonInventoryTwo70TwoStageEchelonInventoryTwo-stageprocess:
Step4 Step5TwoStageEchelonInventoryTwo71TwoStageEchelonInventoryExample1:Letusconsideraparticularliquidproductthatafirmbuysinbulk,thenbreaksdownandrepackages. Sointhiscase,thewarehousecorrespondstotheinventorypriortotherepackagingoperation,andtheretailercorrespondstotheinventoryaftertherepackagingoperation. Thedemandforthisitemcanbeassumedtobeessentiallydeterministicandlevelatarateof1000litersperyear.TwoStageEchelonInventoryExa72TwoStageEchelonInventoryExample1:Theunitvalueofthebulkmaterialoris$1/liter,whilethevalueaddedbythetransforming(breakandpackage)operationis$4/liter.Thefixedcomponentofthepurchasecharge()is$10,whilethesetupcostforthebreakandrepackageoperation()is$15.Finally,theestimatedcarryingchargeis0.24$/$/yr.TwoStageEchelonInventoryExa73TwoStageEchelonInventoryExample1: Step1: Step2:TwoStageEchelonInventoryExa74TwoStageEchelonInventoryExample1:Step3:
thatis, Thus,usen=2.TwoStageEchelonInventoryExa75TwoStageEchelonInventoryExample:Step4:Step5:TwoStageEchelonInventoryExa76TwoStageEchelonInventoryExample1:Inotherwords,wepurchase334litersatatime;one-halfoftheseor167litersareimmediatelybrokenandrepackaged.Whenthese167(finished)litersaredepleted,asecondbreakandrepackagerunof167litersismade.Whenthesearedepleted,westartanewcyclebyagainpurchasing334litersofrawmaterial.TwoStageEchelonInventoryExa77InventoryControlwithUncertainDemandThedemandcanbedecomposedintotwoparts,where=Deterministiccomponentofdemandand=Randomcomponentofdemand.InventoryControlwithUncerta78InventoryControlwithUncertainDemand Thereareanumberofcircumstancesunderwhichitwouldbeappropriatetotreatasbeingdeterministiceventhoughisnotzero.Someoftheseare:Whenthevarianceoftherandomcomponent, issmallrelativetothemagnitudeof.Whenthepredictablevariationismoreimportantthantherandomvariation.Whentheproblemstructureistoocomplextoincludeanexplicitrepresentationofrandomnessinthemodel.InventoryControlwithUncerta79InventoryControlwithUncertainDemand However,formanyitems,therandomcomponentofthedemandistoosignificanttoignore. Aslongastheexpecteddemandperunittimeisrelativelyconstantandtheproblemstructurenottoocomplex,explicittreatmentofdemanduncertaintyisdesirable.InventoryControlwithUncerta80InventoryControlwithUncertainDemand
Example2:
AnewsstandpurchasesanumberofcopiesofTheComputerJournal.Theobserveddemandsduringeachofthelast52weekswere:InventoryControlwithUncerta81InventoryControlwithUncertainDemand
Example2:InventoryControlwithUncerta82InventoryControlwithUncertainDemand
Example2: EstimatetheprobabilitythatthenumberofcopiesoftheJournalsoldinanyweek. Theprobabilitythatdemandis10isestimatedtobe2/52=0.0385,andtheprobabilitythatthedemandis15is5/52=0.0962. Cumulativeprobabilitiescanalsobeestimatedinasimilarway. TheprobabilitythattherearenineorfewercopiesoftheJournalsoldinanyweekis(1+0+0+0+3+1+2+2+4+6)/52=19/52=0.3654.
InventoryControlwithUncerta83InventoryControlwithUncertainDemand
Wegenerallyapproximatethedemandhistoryusingacontinuousdistribution.
Byfar,themostpopulardistributionforinventoryapplicationsisthenormal.
Anormaldistributionisdeterminedbytwoparameters:themeanandthevariance
InventoryControlwithUncerta84InventoryControlwithUncertainDemand
Thesecanbeestimatedfromahistoryofdemandbythesamplemeanandthesamplevariance.InventoryControlwithUncerta85InventoryControlwithUncertainDemand
Thenormaldensityfunctionisgivenbytheformula
Wesubstituteastheestimatorforandastheestimatorfor.InventoryControlwithUncerta86InventoryControlwithUncertainDemand
InventoryControlwithUncerta87OptimizationCriterion
Ingeneral,optimizationinproductionproblemsmeansfindingacontrolrulethatachievesminimumcost. However,whendemandisrandom,thecostincurredisitselfrandom,anditisnolongerobviouswhattheoptimizationcriterionshouldbe. Virtuallyallofthestochasticoptimizationtechniquesappliedtoinventorycontrolassumethatthegoalistominimizeexpectedcosts.OptimizationCriterion 88TheNewsboyModel(ContinuousDemands) Thedemandisapproximatelynormallydistributedwithmean11.731andstandarddeviation4.74. Eachcopyispurchasedfor25centsandsoldfor75cents,andheispaid10centsforeachunsoldcopybyhissupplier. Oneobvioussolutionisapproximately12copies. SupposeMacpurchasesacopythathedoesn'tsell.Hisout-of-pocketexpenseis25cents10cents=15cents. Supposeontheotherhand,heisunabletomeetthedemandofacustomer.Inthatcase,heloses75cents25cents=50centsprofit.TheNewsboyModel(Continuous89TheNewsboyModel(ContinuousDemands)
Notation: =Costperunitofpositiveinventoryremainingattheendoftheperiod(knownastheoveragecost). =Costperunitofunsatisfieddemand.Thiscanbethoughtofasacostperunitofnegativeendinginventory(knownastheunderagecost). Thedemandisacontinuousnonnegativerandomvariablewithdensityfunctionandcumulativedistributionfunction.
Thedecisionvariableisthenumberofunitstobepurchasedatthebeginningoftheperiod.TheNewsboyModel(Continuous90TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:
Thecostfunction TheoptimalsolutionequationTheNewsboyModel(Continuous91TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:TheNewsboyModel(Continuous92TheNewsboyModel(ContinuousDemands)
Example2(continued):
Normallydistributedwithmean=11.73andstandarddeviation=4.74. SinceMacpurchasesthemagazinesfor25centsandcansalvageunsoldcopiesfor10cents,hisoveragecostis=2510=15cents. Hisunderagecostistheprofitoneachsale,sothat=7525=50cents.
TheNewsboyModel(Continuous93TheNewsboyModel(ContinuousDemands)
Example2(continued):
Thecriticalratiois=0.50/0.65=0.77. Purchaseenoughcopiestosatisfyalloftheweeklydemandwithprobability0.77.Theoptimalisthe77thpercentileofthedemanddistribution.
TheNewsboyModel(Continuous94TheNewsboyModel(ContinuousDemands)
Example2(continued):
TheNewsboyModel(Continuous95TheNewsboyModel(ContinuousDemands)
Example2(continued):
Usingthedataofthenormaldistributionweobtainastandardizedvalueof=0.74.Theoptimalis Hence,heshouldpurchase15copieseveryweek.TheNewsboyModel(Continuous96TheNewsboyModel(DiscreteDemands)
Optimalpolicyfordiscretedemand:
Theprocedureforfindingtheoptimalsolutiontothenewsboyproblemwhenthedemandisassumedtobediscreteisanaturalgeneralizationofthecontinuouscase.
Theoptimalsolutionprocedureistolocatethecriticalratiobetweentwovaluesofandchoosethecorrespondingtothehighervalue.ThatisTheNewsboyModel(DiscreteDe97TheNewsboyModel(DiscreteDemands)
Example2:
TheNewsboyModel(DiscreteDe98TheNewsboyModel(DiscreteDemands)
Example2:
Thecriticalratioforthisproblemwas0.77,whichcorrespondstoavalueofbetween=14and=15. Sinceweroundup,theoptimalsolutionis=15.Noticethatthisisexactlythesameorderquantityobtainedusingthenormalapproximation.
TheNewsboyModel(DiscreteDe99TheNewsboyModel(DiscreteDemands)
ExtensiontoIncludeStartingInventory: Theoptimalpolicywhenthereisastartinginventoryof is: Order if.Don'torderif.
Notethatshouldbeinterpretedastheorder-up-topointratherthantheorderquantitywhen.Itisalsoknownasatargetorbasestocklevel.TheNewsboyModel(DiscreteDe100MultiproductSystems ABCanalysis:Thetrade-offsbetweenthecostofcontrollingthesystemandthepotentialbenefitsthataccruefromthatcontrol.Inmultiproductinventorysystemsnotallproductsareequallyprofitable.Alargeportionofthetotaldollarvolumeofsalesisoftenaccountedforbyasmallnumberofinventoryitems.
MultiproductSystems ABCanaly101MultiproductSystems ABCanalysis:
MultiproductSystems ABCanaly102MultiproductSystems ABCanalysis:
SinceAitemsaccountforthelion'sshareoftheyearlyrevenue,theseitemsshouldbewatchedmostclosely. InventorylevelsforAitemsshouldbemonitoredcontinu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年洗车设备采购协议模板
- 2024年国际口译服务协议样例
- 2024年财务专家服务协议协议样本
- 2024年商场租赁终止协议详尽
- 2024年房产买卖协议模板
- 2024企业员工招聘协议样本
- 2024年协议解除正式声明文件
- 2024年建筑行业补充协议模板
- 丢失协议书补签作废法律效力确认书
- 3.5 共点力平衡(含答案) 2024-2025学年高一物理同步精讲义(人教版2019必修第一册)
- 2022年全国小学生天文知识竞赛考试题库(含答案)
- 湖北省黄石市金海大屋边矿区建筑石料用石灰岩矿、硅质岩矿矿产资源开发利用与生态复绿方案
- 诊所医疗废物、污水处理方案
- 2024入团积极分子入团考试题库含答案
- 2024江苏苏豪控股集团招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- 给甲方工程联系函范文(十八篇)
- 争做科学小能手主题班会
- DL-T 5148-2021水工建筑物水泥灌浆施工技术条件-PDF解密
- 陕煤集团笔试题库及答案
- 高中数学《函数的概念及其表示》大单元专题教学设计
- 精神病服药自我管理
评论
0/150
提交评论