运筹学与供应链管理-第4讲课件_第1页
运筹学与供应链管理-第4讲课件_第2页
运筹学与供应链管理-第4讲课件_第3页
运筹学与供应链管理-第4讲课件_第4页
运筹学与供应链管理-第4讲课件_第5页
已阅读5页,还剩107页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4讲

库存管理(II)第4讲

库存管理(II)1Multi-EchelonInventoryinSupplyChainMulti-EchelonInventoryinSup2TwoStageEchelonInventorySequentialstockingpointswithleveldemandTwo-stageprocessTwoStageEchelonInventorySeq3TwoStageEchelonInventoryTwo-stageprocess:

Alittlereflectionshowsthatatleastforthecaseofdeterministicdemanditneverwouldmakesensetohave beanythingbutanintegermultipleof.Therefore,wecanthinkoftwoalternativedecisionvariablesandwhere (4.1)

TwoStageEchelonInventoryTwo4TwoStageEchelonInventoryTwo-stageprocess: Thefirststagecost Thesecondstagecost

ThetotalcostTwoStageEchelonInventoryTwo5TwoStageEchelonInventoryTwo-stageprocess: Thewarehouseecheloninventoryisvaluedat whiletheretailerecheloninventoryisvaluedatonly

TwoStageEchelonInventoryTwo6TwoStageEchelonInventoryTwo-stageprocess:

Thetotalrelevant(setuppluscarrying)costsperunittimearegivenby =averagevalueofthewarehouseecheloninventory,inunits =averagevalueoftheretailerecheloninventory,inunits

TwoStageEchelonInventoryTwo7TwoStageEchelonInventoryTwo-stageprocess:

Substitutingfromequation(4.1)andnotingthattheechelonstocksfollowsawtoothpatterns,

TwoStageEchelonInventoryTwo8TwoStageEchelonInventorySelect(aninteger)andinordertominimizePartialderivationofTRCTwoStageEchelonInventorySel9TwoStageEchelonInventorySubstitutetheresultintothecostequationWerecognizethatthenthatminimizesthesimplerexpressionTwoStageEchelonInventorySub10TwoStageEchelonInventoryAconvenientwayistofirstsetwhichgivesThissolvesforTwoStageEchelonInventoryAc11TwoStageEchelonInventoryAscertainandwhereandarethetwointegerssurroundingtheWhichevergivesthelowervalueofFistheappropriatentouse(becausetheFfunctionisconvexinn).TwoStageEchelonInventoryAsc12TwoStageEchelonInventoryTwo-stageprocess:

Step1 Compute Step2 Ascertainthetwointegervalues,and,thatsurround.TwoStageEchelonInventoryTwo13TwoStageEchelonInventoryTwo-stageprocess:

Step3TwoStageEchelonInventoryTwo14TwoStageEchelonInventoryTwo-stageprocess:

Step4 Step5TwoStageEchelonInventoryTwo15TwoStageEchelonInventoryExample1:Letusconsideraparticularliquidproductthatafirmbuysinbulk,thenbreaksdownandrepackages. Sointhiscase,thewarehousecorrespondstotheinventorypriortotherepackagingoperation,andtheretailercorrespondstotheinventoryaftertherepackagingoperation. Thedemandforthisitemcanbeassumedtobeessentiallydeterministicandlevelatarateof1000litersperyear.TwoStageEchelonInventoryExa16TwoStageEchelonInventoryExample1:Theunitvalueofthebulkmaterialoris$1/liter,whilethevalueaddedbythetransforming(breakandpackage)operationis$4/liter.Thefixedcomponentofthepurchasecharge()is$10,whilethesetupcostforthebreakandrepackageoperation()is$15.Finally,theestimatedcarryingchargeis0.24$/$/yr.TwoStageEchelonInventoryExa17TwoStageEchelonInventoryExample1: Step1: Step2:TwoStageEchelonInventoryExa18TwoStageEchelonInventoryExample1:Step3:

thatis, Thus,usen=2.TwoStageEchelonInventoryExa19TwoStageEchelonInventoryExample:Step4:Step5:TwoStageEchelonInventoryExa20TwoStageEchelonInventoryExample1:Inotherwords,wepurchase334litersatatime;one-halfoftheseor167litersareimmediatelybrokenandrepackaged.Whenthese167(finished)litersaredepleted,asecondbreakandrepackagerunof167litersismade.Whenthesearedepleted,westartanewcyclebyagainpurchasing334litersofrawmaterial.TwoStageEchelonInventoryExa21InventoryControlwithUncertainDemandThedemandcanbedecomposedintotwoparts,where=Deterministiccomponentofdemandand=Randomcomponentofdemand.InventoryControlwithUncerta22InventoryControlwithUncertainDemand Thereareanumberofcircumstancesunderwhichitwouldbeappropriatetotreatasbeingdeterministiceventhoughisnotzero.Someoftheseare:Whenthevarianceoftherandomcomponent, issmallrelativetothemagnitudeof.Whenthepredictablevariationismoreimportantthantherandomvariation.Whentheproblemstructureistoocomplextoincludeanexplicitrepresentationofrandomnessinthemodel.InventoryControlwithUncerta23InventoryControlwithUncertainDemand However,formanyitems,therandomcomponentofthedemandistoosignificanttoignore. Aslongastheexpecteddemandperunittimeisrelativelyconstantandtheproblemstructurenottoocomplex,explicittreatmentofdemanduncertaintyisdesirable.InventoryControlwithUncerta24InventoryControlwithUncertainDemand

Example2:

AnewsstandpurchasesanumberofcopiesofTheComputerJournal.Theobserveddemandsduringeachofthelast52weekswere:InventoryControlwithUncerta25InventoryControlwithUncertainDemand

Example2:InventoryControlwithUncerta26InventoryControlwithUncertainDemand

Example2: EstimatetheprobabilitythatthenumberofcopiesoftheJournalsoldinanyweek. Theprobabilitythatdemandis10isestimatedtobe2/52=0.0385,andtheprobabilitythatthedemandis15is5/52=0.0962. Cumulativeprobabilitiescanalsobeestimatedinasimilarway. TheprobabilitythattherearenineorfewercopiesoftheJournalsoldinanyweekis(1+0+0+0+3+1+2+2+4+6)/52=19/52=0.3654.

InventoryControlwithUncerta27InventoryControlwithUncertainDemand

Wegenerallyapproximatethedemandhistoryusingacontinuousdistribution.

Byfar,themostpopulardistributionforinventoryapplicationsisthenormal.

Anormaldistributionisdeterminedbytwoparameters:themeanandthevariance

InventoryControlwithUncerta28InventoryControlwithUncertainDemand

Thesecanbeestimatedfromahistoryofdemandbythesamplemeanandthesamplevariance.InventoryControlwithUncerta29InventoryControlwithUncertainDemand

Thenormaldensityfunctionisgivenbytheformula

Wesubstituteastheestimatorforandastheestimatorfor.InventoryControlwithUncerta30InventoryControlwithUncertainDemand

InventoryControlwithUncerta31OptimizationCriterion

Ingeneral,optimizationinproductionproblemsmeansfindingacontrolrulethatachievesminimumcost. However,whendemandisrandom,thecostincurredisitselfrandom,anditisnolongerobviouswhattheoptimizationcriterionshouldbe. Virtuallyallofthestochasticoptimizationtechniquesappliedtoinventorycontrolassumethatthegoalistominimizeexpectedcosts.OptimizationCriterion 32TheNewsboyModel(ContinuousDemands) Thedemandisapproximatelynormallydistributedwithmean11.731andstandarddeviation4.74. Eachcopyispurchasedfor25centsandsoldfor75cents,andheispaid10centsforeachunsoldcopybyhissupplier. Oneobvioussolutionisapproximately12copies. SupposeMacpurchasesacopythathedoesn'tsell.Hisout-of-pocketexpenseis25cents10cents=15cents. Supposeontheotherhand,heisunabletomeetthedemandofacustomer.Inthatcase,heloses75cents25cents=50centsprofit.TheNewsboyModel(Continuous33TheNewsboyModel(ContinuousDemands)

Notation: =Costperunitofpositiveinventoryremainingattheendoftheperiod(knownastheoveragecost). =Costperunitofunsatisfieddemand.Thiscanbethoughtofasacostperunitofnegativeendinginventory(knownastheunderagecost). Thedemandisacontinuousnonnegativerandomvariablewithdensityfunctionandcumulativedistributionfunction.

Thedecisionvariableisthenumberofunitstobepurchasedatthebeginningoftheperiod.TheNewsboyModel(Continuous34TheNewsboyModel(ContinuousDemands)

Determiningtheoptimalpolicy:

Thecostfunction TheoptimalsolutionequationTheNewsboyModel(Continuous35TheNewsboyModel(ContinuousDemands)

Determiningtheoptimalpolicy:TheNewsboyModel(Continuous36TheNewsboyModel(ContinuousDemands)

Example2(continued):

Normallydistributedwithmean=11.73andstandarddeviation=4.74. SinceMacpurchasesthemagazinesfor25centsandcansalvageunsoldcopiesfor10cents,hisoveragecostis=2510=15cents. Hisunderagecostistheprofitoneachsale,sothat=7525=50cents.

TheNewsboyModel(Continuous37TheNewsboyModel(ContinuousDemands)

Example2(continued):

Thecriticalratiois=0.50/0.65=0.77. Purchaseenoughcopiestosatisfyalloftheweeklydemandwithprobability0.77.Theoptimalisthe77thpercentileofthedemanddistribution.

TheNewsboyModel(Continuous38TheNewsboyModel(ContinuousDemands)

Example2(continued):

TheNewsboyModel(Continuous39TheNewsboyModel(ContinuousDemands)

Example2(continued):

Usingthedataofthenormaldistributionweobtainastandardizedvalueof=0.74.Theoptimalis Hence,heshouldpurchase15copieseveryweek.TheNewsboyModel(Continuous40TheNewsboyModel(DiscreteDemands)

Optimalpolicyfordiscretedemand:

Theprocedureforfindingtheoptimalsolutiontothenewsboyproblemwhenthedemandisassumedtobediscreteisanaturalgeneralizationofthecontinuouscase.

Theoptimalsolutionprocedureistolocatethecriticalratiobetweentwovaluesofandchoosethecorrespondingtothehighervalue.ThatisTheNewsboyModel(DiscreteDe41TheNewsboyModel(DiscreteDemands)

Example2:

TheNewsboyModel(DiscreteDe42TheNewsboyModel(DiscreteDemands)

Example2:

Thecriticalratioforthisproblemwas0.77,whichcorrespondstoavalueofbetween=14and=15. Sinceweroundup,theoptimalsolutionis=15.Noticethatthisisexactlythesameorderquantityobtainedusingthenormalapproximation.

TheNewsboyModel(DiscreteDe43TheNewsboyModel(DiscreteDemands)

ExtensiontoIncludeStartingInventory: Theoptimalpolicywhenthereisastartinginventoryof is: Order if.Don'torderif.

Notethatshouldbeinterpretedastheorder-up-topointratherthantheorderquantitywhen.Itisalsoknownasatargetorbasestocklevel.TheNewsboyModel(DiscreteDe44MultiproductSystems ABCanalysis:Thetrade-offsbetweenthecostofcontrollingthesystemandthepotentialbenefitsthataccruefromthatcontrol.Inmultiproductinventorysystemsnotallproductsareequallyprofitable.Alargeportionofthetotaldollarvolumeofsalesisoftenaccountedforbyasmallnumberofinventoryitems.

MultiproductSystems ABCanaly45MultiproductSystems ABCanalysis:

MultiproductSystems ABCanaly46MultiproductSystems ABCanalysis:

SinceAitemsaccountforthelion'sshareoftheyearlyrevenue,theseitemsshouldbewatchedmostclosely. InventorylevelsforAitemsshouldbemonitoredcontinuously. Moresophisticatedforecastingproceduresmightbeusedandmorecarewouldbetakenintheestimationofthevariouscostparametersrequiredincalculatingoperatingpolicies.

MultiproductSystems ABCanaly47MultiproductSystems ABCanalysis:

ForBitemsinventoriescouldbereviewedperiodically,itemscouldbeorderedingroupsratherthanindividually,andsomewhatlesssophisticatedforecastingmethodscouldbeused.MultiproductSystems ABCanaly48MultiproductSystems ABCanalysis:TheminimumdegreeofcontrolwouldbeappliedtoCitems.ForveryinexpensiveCitemswithmoderatelevelsofdemand,largelotsizesarerecommendedtominimizethefrequencythattheseitemsareordered.ForexpensiveCitemswithverylowdemand,thebestpolicyisgenerallynottoholdanyinventory.Onewouldsimplyordertheseitemsastheyaredemanded.MultiproductSystems ABCanaly49LotSize-ReorderPointSystemsInwhatfollows,weassumethattheoperatingpolicyisoftheform.However,whengeneralizingtheEOQanalysistoallowforrandomdemand,wetreatandasindependentdecisionvariables.LotSize-ReorderPointSystems50LotSize-ReorderPointSystemsAssumptionsThesystemiscontinuous-reviewDemandisrandomandstationaryThereisafixedpositiveleadtimeforplacinganorderThefollowingcostsareassumedSetupcostat$perorder.Holdingcostat$perunitheldperyear.Proportionalordercostof$peritem.Stock-outcostof$perunitofunsatisfieddemandLotSize-ReorderPointSystems51LotSize-ReorderPointSystems

Describingdemand:

Thedemandduringtheleadtimeisacontinuousrandomvariablewithprobabilitydensityfunction(orpdf),andaccumulativedistributionfunction(orcdf) .Letandbethemeanandstandarddeviationofdemandduringleadtime.LotSize-ReorderPointSystems52LotSize-ReorderPointSystems

Decisionvariables:

Therearetwodecisionvariablesforthisproblem, and, where=thelotsizeororderquantityand =thereorderlevelinunitsofinventory.

LotSize-ReorderPointSystems53LotSize-ReorderPointSystems

Decisionvariables:LotSize-ReorderPointSystems54AdditionalDiscussionofPeriodic-ReviewSystems

Definetwonumbers,and,tobeusedasfollows: Whenthelevelofonhandinventoryislessthanorequalto,anorderforthedifferencebetweentheinventoryandisplaced. Ifisthestartinginventoryinanyperiod,thenthe policyis:If,order.If,don'torder.AdditionalDiscussionofPerio55AdditionalDiscussionofPeriodic-ReviewSystems

DeterminingoptimalvaluesofAdditionalDiscussionofPerio56第4讲

库存管理(II)第4讲

库存管理(II)57Multi-EchelonInventoryinSupplyChainMulti-EchelonInventoryinSup58TwoStageEchelonInventorySequentialstockingpointswithleveldemandTwo-stageprocessTwoStageEchelonInventorySeq59TwoStageEchelonInventoryTwo-stageprocess:

Alittlereflectionshowsthatatleastforthecaseofdeterministicdemanditneverwouldmakesensetohave beanythingbutanintegermultipleof.Therefore,wecanthinkoftwoalternativedecisionvariablesandwhere (4.1)

TwoStageEchelonInventoryTwo60TwoStageEchelonInventoryTwo-stageprocess: Thefirststagecost Thesecondstagecost

ThetotalcostTwoStageEchelonInventoryTwo61TwoStageEchelonInventoryTwo-stageprocess: Thewarehouseecheloninventoryisvaluedat whiletheretailerecheloninventoryisvaluedatonly

TwoStageEchelonInventoryTwo62TwoStageEchelonInventoryTwo-stageprocess:

Thetotalrelevant(setuppluscarrying)costsperunittimearegivenby =averagevalueofthewarehouseecheloninventory,inunits =averagevalueoftheretailerecheloninventory,inunits

TwoStageEchelonInventoryTwo63TwoStageEchelonInventoryTwo-stageprocess:

Substitutingfromequation(4.1)andnotingthattheechelonstocksfollowsawtoothpatterns,

TwoStageEchelonInventoryTwo64TwoStageEchelonInventorySelect(aninteger)andinordertominimizePartialderivationofTRCTwoStageEchelonInventorySel65TwoStageEchelonInventorySubstitutetheresultintothecostequationWerecognizethatthenthatminimizesthesimplerexpressionTwoStageEchelonInventorySub66TwoStageEchelonInventoryAconvenientwayistofirstsetwhichgivesThissolvesforTwoStageEchelonInventoryAc67TwoStageEchelonInventoryAscertainandwhereandarethetwointegerssurroundingtheWhichevergivesthelowervalueofFistheappropriatentouse(becausetheFfunctionisconvexinn).TwoStageEchelonInventoryAsc68TwoStageEchelonInventoryTwo-stageprocess:

Step1 Compute Step2 Ascertainthetwointegervalues,and,thatsurround.TwoStageEchelonInventoryTwo69TwoStageEchelonInventoryTwo-stageprocess:

Step3TwoStageEchelonInventoryTwo70TwoStageEchelonInventoryTwo-stageprocess:

Step4 Step5TwoStageEchelonInventoryTwo71TwoStageEchelonInventoryExample1:Letusconsideraparticularliquidproductthatafirmbuysinbulk,thenbreaksdownandrepackages. Sointhiscase,thewarehousecorrespondstotheinventorypriortotherepackagingoperation,andtheretailercorrespondstotheinventoryaftertherepackagingoperation. Thedemandforthisitemcanbeassumedtobeessentiallydeterministicandlevelatarateof1000litersperyear.TwoStageEchelonInventoryExa72TwoStageEchelonInventoryExample1:Theunitvalueofthebulkmaterialoris$1/liter,whilethevalueaddedbythetransforming(breakandpackage)operationis$4/liter.Thefixedcomponentofthepurchasecharge()is$10,whilethesetupcostforthebreakandrepackageoperation()is$15.Finally,theestimatedcarryingchargeis0.24$/$/yr.TwoStageEchelonInventoryExa73TwoStageEchelonInventoryExample1: Step1: Step2:TwoStageEchelonInventoryExa74TwoStageEchelonInventoryExample1:Step3:

thatis, Thus,usen=2.TwoStageEchelonInventoryExa75TwoStageEchelonInventoryExample:Step4:Step5:TwoStageEchelonInventoryExa76TwoStageEchelonInventoryExample1:Inotherwords,wepurchase334litersatatime;one-halfoftheseor167litersareimmediatelybrokenandrepackaged.Whenthese167(finished)litersaredepleted,asecondbreakandrepackagerunof167litersismade.Whenthesearedepleted,westartanewcyclebyagainpurchasing334litersofrawmaterial.TwoStageEchelonInventoryExa77InventoryControlwithUncertainDemandThedemandcanbedecomposedintotwoparts,where=Deterministiccomponentofdemandand=Randomcomponentofdemand.InventoryControlwithUncerta78InventoryControlwithUncertainDemand Thereareanumberofcircumstancesunderwhichitwouldbeappropriatetotreatasbeingdeterministiceventhoughisnotzero.Someoftheseare:Whenthevarianceoftherandomcomponent, issmallrelativetothemagnitudeof.Whenthepredictablevariationismoreimportantthantherandomvariation.Whentheproblemstructureistoocomplextoincludeanexplicitrepresentationofrandomnessinthemodel.InventoryControlwithUncerta79InventoryControlwithUncertainDemand However,formanyitems,therandomcomponentofthedemandistoosignificanttoignore. Aslongastheexpecteddemandperunittimeisrelativelyconstantandtheproblemstructurenottoocomplex,explicittreatmentofdemanduncertaintyisdesirable.InventoryControlwithUncerta80InventoryControlwithUncertainDemand

Example2:

AnewsstandpurchasesanumberofcopiesofTheComputerJournal.Theobserveddemandsduringeachofthelast52weekswere:InventoryControlwithUncerta81InventoryControlwithUncertainDemand

Example2:InventoryControlwithUncerta82InventoryControlwithUncertainDemand

Example2: EstimatetheprobabilitythatthenumberofcopiesoftheJournalsoldinanyweek. Theprobabilitythatdemandis10isestimatedtobe2/52=0.0385,andtheprobabilitythatthedemandis15is5/52=0.0962. Cumulativeprobabilitiescanalsobeestimatedinasimilarway. TheprobabilitythattherearenineorfewercopiesoftheJournalsoldinanyweekis(1+0+0+0+3+1+2+2+4+6)/52=19/52=0.3654.

InventoryControlwithUncerta83InventoryControlwithUncertainDemand

Wegenerallyapproximatethedemandhistoryusingacontinuousdistribution.

Byfar,themostpopulardistributionforinventoryapplicationsisthenormal.

Anormaldistributionisdeterminedbytwoparameters:themeanandthevariance

InventoryControlwithUncerta84InventoryControlwithUncertainDemand

Thesecanbeestimatedfromahistoryofdemandbythesamplemeanandthesamplevariance.InventoryControlwithUncerta85InventoryControlwithUncertainDemand

Thenormaldensityfunctionisgivenbytheformula

Wesubstituteastheestimatorforandastheestimatorfor.InventoryControlwithUncerta86InventoryControlwithUncertainDemand

InventoryControlwithUncerta87OptimizationCriterion

Ingeneral,optimizationinproductionproblemsmeansfindingacontrolrulethatachievesminimumcost. However,whendemandisrandom,thecostincurredisitselfrandom,anditisnolongerobviouswhattheoptimizationcriterionshouldbe. Virtuallyallofthestochasticoptimizationtechniquesappliedtoinventorycontrolassumethatthegoalistominimizeexpectedcosts.OptimizationCriterion 88TheNewsboyModel(ContinuousDemands) Thedemandisapproximatelynormallydistributedwithmean11.731andstandarddeviation4.74. Eachcopyispurchasedfor25centsandsoldfor75cents,andheispaid10centsforeachunsoldcopybyhissupplier. Oneobvioussolutionisapproximately12copies. SupposeMacpurchasesacopythathedoesn'tsell.Hisout-of-pocketexpenseis25cents10cents=15cents. Supposeontheotherhand,heisunabletomeetthedemandofacustomer.Inthatcase,heloses75cents25cents=50centsprofit.TheNewsboyModel(Continuous89TheNewsboyModel(ContinuousDemands)

Notation: =Costperunitofpositiveinventoryremainingattheendoftheperiod(knownastheoveragecost). =Costperunitofunsatisfieddemand.Thiscanbethoughtofasacostperunitofnegativeendinginventory(knownastheunderagecost). Thedemandisacontinuousnonnegativerandomvariablewithdensityfunctionandcumulativedistributionfunction.

Thedecisionvariableisthenumberofunitstobepurchasedatthebeginningoftheperiod.TheNewsboyModel(Continuous90TheNewsboyModel(ContinuousDemands)

Determiningtheoptimalpolicy:

Thecostfunction TheoptimalsolutionequationTheNewsboyModel(Continuous91TheNewsboyModel(ContinuousDemands)

Determiningtheoptimalpolicy:TheNewsboyModel(Continuous92TheNewsboyModel(ContinuousDemands)

Example2(continued):

Normallydistributedwithmean=11.73andstandarddeviation=4.74. SinceMacpurchasesthemagazinesfor25centsandcansalvageunsoldcopiesfor10cents,hisoveragecostis=2510=15cents. Hisunderagecostistheprofitoneachsale,sothat=7525=50cents.

TheNewsboyModel(Continuous93TheNewsboyModel(ContinuousDemands)

Example2(continued):

Thecriticalratiois=0.50/0.65=0.77. Purchaseenoughcopiestosatisfyalloftheweeklydemandwithprobability0.77.Theoptimalisthe77thpercentileofthedemanddistribution.

TheNewsboyModel(Continuous94TheNewsboyModel(ContinuousDemands)

Example2(continued):

TheNewsboyModel(Continuous95TheNewsboyModel(ContinuousDemands)

Example2(continued):

Usingthedataofthenormaldistributionweobtainastandardizedvalueof=0.74.Theoptimalis Hence,heshouldpurchase15copieseveryweek.TheNewsboyModel(Continuous96TheNewsboyModel(DiscreteDemands)

Optimalpolicyfordiscretedemand:

Theprocedureforfindingtheoptimalsolutiontothenewsboyproblemwhenthedemandisassumedtobediscreteisanaturalgeneralizationofthecontinuouscase.

Theoptimalsolutionprocedureistolocatethecriticalratiobetweentwovaluesofandchoosethecorrespondingtothehighervalue.ThatisTheNewsboyModel(DiscreteDe97TheNewsboyModel(DiscreteDemands)

Example2:

TheNewsboyModel(DiscreteDe98TheNewsboyModel(DiscreteDemands)

Example2:

Thecriticalratioforthisproblemwas0.77,whichcorrespondstoavalueofbetween=14and=15. Sinceweroundup,theoptimalsolutionis=15.Noticethatthisisexactlythesameorderquantityobtainedusingthenormalapproximation.

TheNewsboyModel(DiscreteDe99TheNewsboyModel(DiscreteDemands)

ExtensiontoIncludeStartingInventory: Theoptimalpolicywhenthereisastartinginventoryof is: Order if.Don'torderif.

Notethatshouldbeinterpretedastheorder-up-topointratherthantheorderquantitywhen.Itisalsoknownasatargetorbasestocklevel.TheNewsboyModel(DiscreteDe100MultiproductSystems ABCanalysis:Thetrade-offsbetweenthecostofcontrollingthesystemandthepotentialbenefitsthataccruefromthatcontrol.Inmultiproductinventorysystemsnotallproductsareequallyprofitable.Alargeportionofthetotaldollarvolumeofsalesisoftenaccountedforbyasmallnumberofinventoryitems.

MultiproductSystems ABCanaly101MultiproductSystems ABCanalysis:

MultiproductSystems ABCanaly102MultiproductSystems ABCanalysis:

SinceAitemsaccountforthelion'sshareoftheyearlyrevenue,theseitemsshouldbewatchedmostclosely. InventorylevelsforAitemsshouldbemonitoredcontinu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论