![七年级下册数学教案合集十三篇_第1页](http://file4.renrendoc.com/view/343802101f1b598c640562ee0a1877c9/343802101f1b598c640562ee0a1877c91.gif)
![七年级下册数学教案合集十三篇_第2页](http://file4.renrendoc.com/view/343802101f1b598c640562ee0a1877c9/343802101f1b598c640562ee0a1877c92.gif)
![七年级下册数学教案合集十三篇_第3页](http://file4.renrendoc.com/view/343802101f1b598c640562ee0a1877c9/343802101f1b598c640562ee0a1877c93.gif)
![七年级下册数学教案合集十三篇_第4页](http://file4.renrendoc.com/view/343802101f1b598c640562ee0a1877c9/343802101f1b598c640562ee0a1877c94.gif)
![七年级下册数学教案合集十三篇_第5页](http://file4.renrendoc.com/view/343802101f1b598c640562ee0a1877c9/343802101f1b598c640562ee0a1877c95.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级下册数学教案合集十三篇篇1:七年级下册数学教案教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。教学难点数轴的概念和用数轴上的点表示有理数知识重点教学过程(师生活动)设计理念设置情境引入课题教师通过实例、课件演示得到温度计读数.问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?(多媒体出示3幅图,三个温度分别为零上、零度和零下)问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学点表示数的感性认识。点表示数的理性认识。合作交流探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解寻找规律归纳结论问题3:1,你能举出一些在现实生活中用直线表示数的实际例子吗?2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?4,每个数到原点的距离是多少?由此你会发现了什么规律?(小组讨论,交流归纳)归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。巩固练习教科书第12页练习小结与作业课堂小结请学生总结:1,数轴的三个要素;2,数轴的作以及数与点的转化方法。本课作业1,必做题:教科书第18页习题1.2第2题2,选做题:教师自行安排本课教育评注(课堂设计理念,实际教学效果及改善设想)1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自身动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。篇2:七年级下册数学教案教学目标1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算;2.了解倒数概念,会求给定有理数的倒数;3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。教学建议(一)重点、难点分析本节教学的重点是熟练进行运算,教学难点是理解法则。1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。(二)知识结构(三)教法建议1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。2.有关0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。3.理解倒数的概念(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。4.有关倒数的求法要注意:(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.(2)正数的倒数是正数,负数的倒数仍是负数.(3)负倒数的定义:乘积是-1的两个数互为负倒数.教学设计示例一.素质教育目标(一)知识教学点1.了解有理数除法的定义.2.理解倒数的意义.3.掌握有理数除法法则,会进行运算.(二)能力训练点1.通过有理数除法法则的导出及运算,让学生体会转化思想.2.培养学生利用数学思想指导思维活动的能力.(三)德育渗透点通过学习有理数除法运算、感知数学知识有普遍联系性、相互转化性.(四)美育渗透点把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.二.学法引导1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语并及时点拨,使学生主动发展思维和能力.2.学生学法:通过练习探索新知→归纳除法法则→巩固练习三.重点、难点、疑点及解决办法1.重点:除法法则的灵活利用和倒数的概念.2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.3.疑点:对零不能作除数与零没有倒数的理解.四.课时安排1课时五.教具学具准备投影仪、自制胶片、彩粉笔.六.师生互动活动设计教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.七.教学步骤(一)创设情境,复习导入师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.【教法说明】同小学算术中除法一样—除以一个数等于乘以这个数的倒数,因此必须以学好求一个有理数的倒数为基础学习.(二)探索新知,讲授新课1.倒数.(出示投影1)4×()=1;×()=1;0.5×()=1;0×()=1;-4×()=1;×()=1.学生活动:口答以上题目.【教法说明】在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的转变中,让学生回忆、体会出求各种数的倒数的方法.师问:两个数乘积是1,这两个数有什么关系?学生活动:乘积是1的两个数互为倒数.(板书)师问:0有倒数吗?为什么?学生活动:通过题目0×()=1得出0乘以任何数都不得1,0没有倒数.师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.明确提出问题:根据以上题目,怎样求整数、分数、小数的倒数?【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,明确提出这个问题是让学生带着问题来做下组练习.(出示投影2)求下列各数的倒数:(1);(2);(3);(4);(5)-5;(6)1.学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.2.计算:8÷(-4).计算:8×=?(-2)∴8÷(-4)=8×().再尝试:-16÷(-2)=?-16×()=?师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?学生活动:同桌互相讨论.(一个学生回答)师强调后板书:[板书]【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.(三)尝试反馈,巩固练习师在黑板上出示例题.计算(1)(-36)÷9,(2)()÷().学生尝试做此题目.(出示投影3)1.计算:(1)(-18)÷6;(2)(-63)÷(-7);(3)(-36)÷6;(4)1÷(-9);(5)0÷(-8);(6)16÷(-3).2.计算:(1)()÷();(2)(-6.5)÷0.13;(3)()÷();(4)÷(-1).学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.明确提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?学生活动:分组讨论,1—2个同学回答.[板书]2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何不等于0的数,都得0.【教法说明】通过上组练习的结果,不难看得出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活利用这两种方法.(四)变式训练,培养能力回顾例1计算:(1)(-36)÷9;(2)()÷().明确提出问题:每个题目你想采用哪种法则计算更简单?学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.(2)题仍用除以一个数等于乘以这个数的倒数较简单.明确提出问题:-36:9=?;:()=?它们都属于除法运算吗?学生活动:口答出答案.(出示投影4)例2化简下列分数(1);(2);(3)或3:(-36)(4);(5).例3计算(1)()÷(-6);(2)-3.5÷×();(3)(-6)÷(-4)×().学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.【教法说明】例2是检查学生对有理数除法法则的灵活利用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:如在(1)()÷(-6)中.根据方法①()÷(-6)=×()=.根据方法②()÷(-6)=(24+)×=4+=.让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.(五)归纳小结师:今天我们学习了及倒数的概念,回答问题:1.的倒数是__________________();2.;3.若、同号,则;若、异号,则;若,时,则;学生活动:分组讨论,三个学生口答.【教法说明】对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自身把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.八.随堂练习1.填空题(1)的倒数为__________,相反数为____________,绝对值为___________(2)(-18)÷(-9)=_____________;(3)÷(-2.5)=_____________;(4);(5)若,是;(6)若、互为倒数,则;(7)或、互为相反数且,则,;(8)当时,有意义;(9)当时,;(10)若,,则,和符号是_________,___________.2.计算(1)-4.5÷()×;(2)(-12)÷〔(-3)+(-15)〕÷(+5).九、布置作业(一)必做题:1.仿照例1.例2自编2道题,同桌交换解答.2.计算:(1)()×()÷();(2)-6÷(-0.25)×.3.当,,时求的值.(二)选做题:1.填空:用“>”“<”“=”号填空(1)如果,则,;(2)如果,则,;(3)如果,则,;(4)如果,则,;2.判断:正确的打“√”错的打“×”(1)();(2)().3.(1)倒数等于它本身的数是______________.(2)互为相反数的数(0除外)商是________________.【教法说明】必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提升了学生利用知识的能力.选作题是对这节课重点内容的进一步理解和利用,为学有余力的学生提供了展示自身的机会.十、板书设计篇3:七年级下册数学教案一.素质教育目标(一)知识教学点1.了解有理数除法的定义.2.理解倒数的意义.3.掌握有理数除法法则,会进行运算.(二)能力训练点1.通过有理数除法法则的导出及运算,让学生体会转化思想.2.培养学生利用数学思想指导思维活动的能力.(三)德育渗透点通过学习有理数除法运算、感知数学知识有普遍联系性、相互转化性.(四)美育渗透点把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.二.学法引导1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语并及时点拨,使学生主动发展思维和能力.2.学生学法:通过练习探索新知→归纳除法法则→巩固练习三.重点、难点、疑点及解决办法1.重点:除法法则的灵活利用和倒数的概念.2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.3.疑点:对零不能作除数与零没有倒数的理解.四.课时安排1课时五.教具学具准备投影仪、自制胶片、彩粉笔.六.师生互动活动设计教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.七.教学步骤(一)创设情境,复习导入师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.【教法说明】同小学算术中除法一样—除以一个数等于乘以这个数的倒数,因此必须以学好求一个有理数的倒数为基础学习.(二)探索新知,讲授新课1.倒数.(出示投影1)4×()=1;×()=1;0.5×()=1;0×()=1;-4×()=1;×()=1.学生活动:口答以上题目.【教法说明】在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的转变中,让学生回忆、体会出求各种数的倒数的方法.师问:两个数乘积是1,这两个数有什么关系?学生活动:乘积是1的两个数互为倒数.(板书)师问:0有倒数吗?为什么?学生活动:通过题目0×()=1得出0乘以任何数都不得1,0没有倒数.师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.明确提出问题:根据以上题目,怎样求整数、分数、小数的倒数?【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,明确提出这个问题是让学生带着问题来做下组练习.(出示投影2)求下列各数的倒数:(1);(2);(3);(4);(5)-5;(6)1.学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.2.计算:8÷(-4).计算:8×()=?(-2)8÷(-4)=8×().再尝试:-16÷(-2)=?-16×()=?师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?学生活动:同桌互相讨论.(一个学生回答)师强调后板书:[板书]【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.(三)尝试反馈,巩固练习师在黑板上出示例题.计算(1)(-36)÷9,(2)()÷().学生尝试做此题目.(出示投影3)1.计算:(1)(-18)÷6;(2)(-63)÷(-7);(3)(-36)÷6;(4)1÷(-9);(5)0÷(-8);(6)16÷(-3).2.计算:(1)()÷();(2)(-6.5)÷0.13;(3)()÷();(4)÷(-1).学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.明确提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?学生活动:分组讨论,1—2个同学回答.[板书]2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何不等于0的数,都得0.【教法说明】通过上组练习的结果,不难看得出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活利用这两种方法.(四)变式训练,培养能力回顾例1计算:(1)(-36)÷9;(2)()÷().明确提出问题:每个题目你想采用哪种法则计算更简单?学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.(2)题仍用除以一个数等于乘以这个数的倒数较简单.明确提出问题:-36:9=?;:()=?它们都属于除法运算吗?学生活动:口答出答案.(出示投影4)例2化简下列分数例3计算(1)()÷(-6);(2)-3.5÷×();(3)(-6)÷(-4)×().学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.【教法说明】例2是检查学生对有理数除法法则的灵活利用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:如在(1)()÷(-6)中.根据方法①()÷(-6)=×()=.根据方法②()÷(-6)=(24+)×=4+=.让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.(五)归纳小结师:今天我们学习了及倒数的概念,回答问题:1.的倒数是__________________();学生活动:分组讨论。【教法说明】对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自身把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.八.随堂练习1.填空题(1)的倒数为__________,相反数为____________,绝对值为___________(2)(-18)÷(-9)=_____________;(3)÷(-2.5)=_____________;(4);(5)若,是;(6)若、互为倒数,则;(7)或、互为相反数且,则,;(8)当时,有意义;(9)当时,;(10)若,,则,和符号是_________,___________.2.计算(1)-4.5÷()×;(2)(-12)÷〔(-3)+(-15)〕÷(+5).九、布置作业(一)必做题:1.仿照例1.例2自编2道题,同桌交换解答.2.计算:(1)()×()÷();(2)-6÷(-0.25)×.3.当,,时求的值.(二)选做题:1.填空:用“>”“<”“=”号填空(1)如果,则,;(2)如果,则,;(3)如果,则,;(4)如果,则,;2.判断:正确的打“√”错的打“×”(1)();(2)().3.(1)倒数等于它本身的数是______________.(2)互为相反数的数(0除外)商是________________.【教法说明】必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提升了学生利用知识的能力.选作题是对这节课重点内容的进一步理解和利用,为学有余力的学生提供了展示自身的机会.十、板书设计篇4:人教版七年级下册数学教案教学目标知识与技能:通过学习,掌握三角形的内角和是180度,四边形的内角和是360度。能利用三角形的内角和是180°这一规律,求三角形中未知角的度数。过程与方法:通过动手操作,使学生理解并掌握三角形的内角和是180°的结论,培养学生动手动脑及分析推理能力。情感、态度和价值观:培养学生动手操作、仔细观察、认真思考、善于合作的不错学习品质。教学重难点教学重点对三角形内角和知识的实际利用。教学难点三角形的内角和是180°的推理。教学工具三种类型的三角形各一个,多媒体课件。教学过程一.创设情境,激发兴趣1.出示例6锐角三角形和直角三角形哪个的内角和更大呢?钝角三角形呢?各种三角形的内角和各是多少度?2.你用什么方法来验证这个猜想?(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。二.学习新课(一)学习例6,找到三角形的内角和的规律:1.量一量:①以小组为单位任画三个三角形(锐角三角形、直角三角形和钝角三角形各一个),利用手中的工具计算三角形三个内角的和是多少度?(组内分工,两人度量,一人记录,一人计算,一人汇报。)②学生汇报各组度量和计算的结果。小组内做好记录。③各小组发表意见。④教师小结,大家算出的三角形的内角和都接近180°,那,三角形的内角和与180°究竟是怎样的关系呢?谁能用更好的办法来验证呢?就让我们一起来动手实验研究,一定会弄清这个问题的。2.撕一撕(剪一剪):①刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?提示学生,可以把三个内角撕下来拼成一个角,就只需测量一次了。②课件演示将三个内角拼成一个角。③学生动手拼一拼后发表各自的意见。3.折一折:①课件演示折法。三个角拼在一起组成了一个什么角?②请学生拿出桌上三种类型的三角形纸片,将三个角折拼在一起,三个角拼在一起组成了一个什么角?③我们可以得出什么结论?(三角形的内角和是180°)4.得出结论。那,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包含了所有三角形)结论:三角形的内角和是180°。5.完成做一做。(二)学习例7,找到四边形的内角和的规律:1.四边形都包含哪些?2.长方形和正方形的四个内角和是多少度?3.那其它的四边形的四个内角和是多少度?教师提示学生可以把四边形分成两个三角形来计算。课件演示平行四边、形梯形和一般的四边形的内角和都是360度。4.得出结论:四边形的内角和的是360度。5.完成做一做。三.巩固练习1.完成练习十六第2题。2.一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?(课本练习十六第3题)3.完成练习十六第4题。课后小结谈一谈,今天这节课你有哪些收获?课后习题一.填空。1.三角形的内角和是()。2.在直角三角形中,两个锐角的和是()。3.在一个三角形中,有两个角分别是110°和40°,那第三个角是()度。4.在一个等腰三角形中,顶角是60°,它的一个底角是()。二.判断。(对的画“√”,错的画“×”)1.直角三角形中只能有一个角是直角。()2.等边三角形一定是锐角三角形。()3.三角形共有一条高。()4.两个底角都是28°的三角形,一定是钝角三角形。()5.钝角三角形的内角和大于锐角三角形的内角和。()6.直角三角形中的两个锐角和正好等于90°。()7.所有的等边三角形都是等腰三角形。()8.将一个三角形剪成两个三角形,那这两个三角形的内角和都是90°。()三.求下面三角形中∠3的度数,并指出是什么三角形。1.∠1=30°,∠2=108°,∠3=(),它是()三角形。2.∠1=90°,∠2=45°,∠3=(),它是()三角形。3.∠1=70°,∠2=70°,∠3=()。它是()三角形。四.如下图,∠1=55°板书三角形的内角和是180°篇5:人教版七年级下册数学教案教学目标1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。2.会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。3.感悟构建数学模型是解决实际问题的重要方法之一。教学重难点理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。教学过程一.创设情景、生成问题同学们,我们先来猜个谜语:一棵小树五个叉,不长叶子不开花。能写会算还会花,天天干活不说话。(打一人体器官)师:看大屏幕的手你从中发现了哪个数字?(生:5)师:老师还发现了一个数字是4,你知道它指的的什么吗?生:手指缝......师:对,是手指缝,在数学上我们把它叫做间隔。板书:间隔像手指缝一样一共有四个间隔,我们可以把这个间隔的多少叫做间隔数。(板书)师:请同学们看几组图片,让我们一起认识一下间隔。(课件出示)出示学生放学路队,数一数,同学之间的间隔有多少个?像两个同学之间的距离我们把它叫做间距师:在生活中哪些地方还有间隔?师:树与树之间也有间隔,同学们看,这一排排的树多么漂亮,这节棵我们就一起来研究与植树有关的数学问题。板书:植树问题二.探索交流、解决问题(一)、同学们知道XX月12是什么日子吗?对,是植树节,这一天全国上下都在植树,因此说,植树节时我们都应该植树,为保护环境贡献自身的一份力量。同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?1.理解信息。请看题,你获得了哪些信息?预设:从以下几点理解题意⑴什么是“一边植树”?⑵能解释一下“两端要种”吗?(板书:两端要种)追问:与“两边要种”意思一样么?⑶每隔5米是什么意思?生:就是两棵树之间的“距离”;师:两棵树之间的一段距离,我们也可以看作一个间隔。2.猜想。师:如果这条路的一边用一条线段来表示,请你口算一共需要多少棵树苗呢?你们都是怎么想得?听起来,好像都挺有道理,到底哪个答案是对的?大家能用更加直观的方法,来验证自身的答案吗?(画图)3.化繁为简.⑴化繁为简师:(课件演示)请看,“两端要种”,先在开头种上一棵,然后每隔5米种一棵......大家看,种了多少米了?生:20米师:一共要种多少米?(20米)照这样一棵一棵,一直画到20米?你有什么感想?生:......师:这样一棵一棵画下去,方法是可以的,但棵数太多了,太麻烦了,那有什么更简单的方法吗?生:......师:好办法,⑵学生上台板演画图并解答。师追问:间隔长度是几米?有几段间隔?种了几棵数?间隔段数只有4段,为什么可以种5棵树呢?师:这样一来,虽然不能直接验证了,但可以从简单例子入手,看看间隔的段数和棵数到底有什么关系。(3)、举例验证。师:一个事例还不能说明植树问题的规律,我们还需要别的例子。现在我们来做一个试验。20米的小路上植树。要求:①每相邻两棵树之间的距离相等,两端要种。②画一画线段图,然后小组轻轻地交流:你研究的间隔长是几米,看看有几段间隔,能种几棵树?学生分小组合作研究、每小组发填写表格:通过观察表格中的数据,我们小组发现了:(4)汇报交流,发现规律。(根据学生的回答,教师完成表格)师:通过画图我们找出了间隔段数和棵数,现在请你静静地观察表格,你们有什么发现?生:全长÷间隔长度=间隔段数间隔段数+1=棵数师追问:也就是说要求一共要种几棵树,先要求出什么?(5)游戏:你问我答那也就是说,如果在一条路上有50个间隔的话,有多少棵树?100个间隔呢?400个间隔呢?n个间隔呢?反之,如果一条路上载了36棵树,有多少个间隔?85棵树呢?n棵树呢?师:如果是种50米,两端种,还有这样的规律吗?100米呢?1000米呢?小结:看来这样的规律是普遍存在于两端都种的植树问题当中的。4.应用规律,解决原题。师:现在你能解决这个问题吗?请你试着列出算式。(请学生板演,并说解题思路)师追问:先求什么?,再求什么?为什么要加1呢?5.梳理方法。师:让我们回忆一下,刚才我们遇到两端种的植树问题,是通过怎样的办法,最后成功解决的?生:......师小结:当我们遇到一个不能直接解决的难题,出示例1,像100米不好直接画图,怎么办?可以先给出一个猜想,要判断这个猜想对不对,可以化繁为简用简单的例子验证,并且可以从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。(课件出示)这是一种很重要的数学方法,以后我们还会经常用到它!三.联系生活,建构模型。同学们,像这种包含点数和间隔数的例子,不但植树问题中有,生活中的很多问题也有,谁能举几个这样的例子?学生自由发言,如果学生说不上来,老师顺势说明:生活中像这样的例子大家不好想,老师倒想出了几个:1.出示手,我们的手指有五个,手指和手指之间都有间隔,请观察这里有几个手指,几个间隔,他们之间有什么关系?4个手指,有几个间隔?3个手指呢?2个手指呢?2.小游戏:任意选2个邻桌学生(喻为小树)起立,手拉手(间隔)问:有几棵小树几个间隔?教师加入其中手拉手,问:现在有,,,,(2个间隔,3棵小树)再加一个学生,现在有......继续往下说3.学生自由说生活中的例子。4.反馈后小结:通过刚才的发言,我们知道植树问题普遍地存在于我们的生活当中。手指的个数、楼层数、队伍中的人数,教室的灯和课桌、马路边的路灯、花盆等就相当于我们上面提到的树的棵数,而手指的间隔、梯子的架数、人与人之间的距离等等就相当于间隔数,因此,类似于两端都种的这种植树问题的数量间的关系都可以用“棵数=间隔数+1”这个关系式来表示。四.应用模型,解决实际问题1.P118做一做:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?让学生独立完成,全班交流时重点让学生说一说“(36-1)”表示什么?2.在一条全长180米的街道一旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?3.广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?活学活用:现在要在这条1000米长的公路的一侧安放垃圾桶(首尾要安装),每100米安放一个。一共需要多少个垃圾桶?五.全课总结师:通过本节课的学习,你学会了什么?篇6:人教版七年级下册数学教案教学目标1.使学生通过生活中的事例,初步体会“植树问题”的思想方法。2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力。3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。教学重难点教学重点:探索发现“植树问题”的解题规律。教学难点:利用“植树问题”的解题思想解决实际问题。教学过程一.对比引入,揭示课题1.出示复习题:在一条6m长的小路的一旁栽树,每隔3m栽一棵(两端都栽),一共要栽多少棵树?(1)要求学生说一说自身是怎样解决这个问题的。(指名汇报)(2)对于两端都栽的植树问题,棵数和间隔数之间有怎样的关系?你能用一个式子表示它们之间的关系吗?(指名回答:棵数=间隔数+1)2.引入新课。师:同学们对于上节课的知识掌握得非常好!如果老师把上题改为:在一条6m长的小路的一旁栽树,每隔3m栽一棵(两端不栽),一共要栽多少棵树?(1)想一想,这道题与上一道题相比较,有什么变化?(2)说一说你是怎么理解“两端不栽”的。(学生思考后自由汇报)师:这节课我们就来研究一下“两端不栽”的植树问题,看一看棵数与间隔数之间有怎样的关系。(板书课题)设计意图:让学生在了解的情境中借助已有的知识经验开展学习,充分调动学生学习的积极性,让学生在不知不觉中进入学习环境。二.合作探究,发现规律1.从简单的数据分析,发现两端不栽的规律。(1)教师引导学生用画线段、摆图形、摆小棒等自身喜欢的方法在小组内研究,并完成下面的统计。总长间距(3m)间隔数(个)棵数(两端不栽)6m间距(3m)219m间距(3m)3212m间距(3m)4315m间距(3m)5418m间距(3m)65........(2)填写完后在小组内交流一下,你是用什么方法进行验证的?从中你发现了什么规律?(生自由汇报:两端不栽,棵数比间隔数少1或间隔数比棵数多1)设计意图:学生是学习的主人,设计丰富的探究活动,采用多样的学习方式,引导学生主动参与探究的过程。教师放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了他们自主探究的意识。教师恰当地向学生渗透“遇到比较复杂的问题先想简单的问题,从简单的问题入手来研究”这一数学思想。2.自主学习,应用规律解决教材107页例2。同学们在全长10米的小路一边植树,每间隔5米栽一棵。(两端不栽)一共要栽多少棵?(1)相邻两棵树之间的距离是5米。一共要栽多少棵树?①认真读题,分析题意,说一说自身发现的数学信息。②独立思考,怎么解决。③组内交流,确定方法。(2)交流汇报。师:请各小组把自身的解决方法介绍给大家,看哪个小组的最合理?①各小组汇报自身的算法。方法10÷5=2(棵)2-1=1(棵)②课件演示3.同学们在全长10米的小路一边植树,每间隔2米栽一棵。(两端不栽)一共要栽多少棵?学生独立完成,课件演示。为了美化环境,学校准备在操场边上的一条100米长的小路一边植树,每间隔5米栽一棵(两端不栽),需要准备多少棵树苗呢?4.总结规律。师:从前面的分析中你发现了什么规律?能用一个式子表示出来吗?(根据学生的汇报板书:棵数=间隔数-1)师总结:在生活中,有这种规律的数学问题叫做两端不栽的植树问题。设计意图:如果说生活经验是学习的基础,学生间的合作交流是学习的推动力,那本环节将“发现规律”与“利用规律”结合起来,通过不完全归纳法验证自身找到的规律,渗透了代数思想。三.联系实际,巩固应用1.长平村的村道长1000米,在村道一旁安装路灯(两端不安),每隔20米安装一盏,根据这些信息,你能算出这条村道一共安装了多少盏路灯吗?(结合生活实际去分析题意,独立解答)2.大象馆和猩猩馆相距60米,绿化队要在小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?(应用规律进行解答)四.全课总结同学们,今天你有哪些收获?在应用规律解决问题的时候需要注意些什么呢?五.布置作业教材110页8题。脑筋急转弯:把一根木头钜成6段,要钜多少次?板书设计植树问题(两端不栽)棵数=间隔数-1篇7:北师大七年级下册数学教案[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能利用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索[教学设计]一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。观察剪刀剪布的过程,引入两条相交直线所成的角。学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,明确提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达;有公共的顶点O,而且的两边分别是两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)3学生根据观察和度量完成下表:两条直线相交所形成的角分类位置关系数量关系教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念和对顶角的性质三.初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固利用例题:如图,直线a,b相交,,求的度数。[巩固练习](教科书5页练习)已知,如图,,求:的度数[小结]邻补角、对顶角.[作业]课本P9-1,2P10-7,8[备选题]一判断题:如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那它们互为邻补角()两条直线相交,如果它们所成的邻补角相等,那一对对顶角就互补()二填空题1如图,直线AB、CD、EF相交于点O,的对顶角是,的邻补角是若:=2:3,,则=2如图,直线AB、CD相交于点O则篇8:七年级下册数学教案人教版教学目标1.了解的概念和的画法,掌握的三要素;2.会用上的点表示有理数,会利用比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。教学建议一.重点、难点分析本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概念包含两个内容,首先是的三要素:原点、正方向、单位长度缺一不可,第二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.二.知识结构有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫原点正方向单位长度帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数比较有理数大小,上右边的数总比左边的数要大在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。三.教法建议小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改善就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。有关有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。四.的相关知识点1.的概念(1)规定了原点、正方向和单位长度的直线叫做.这里包含两个内容:首先是的三要素:原点、正方向、单位长度缺一不可.第二是这三个要素都是规定的.(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数.以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习.2.的画法(1)画直线(一般画成水平的)、定原点,标出原点“O”.(2)取原点向右方向为正方向,并标出箭头.(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。(4)标注数字时,负数的次序不能写错,如下图。3.用比较有理数的大小(1)在上表示的两数,右边的数总比左边的数大。(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。五.定义的理解1.规定了原点、正方向和单位长度的直线叫做,如图1所示.2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2).A点表示-4;B点表示-1.5;O点表示0;C点表示3.5;D点表示6.从上面的例子不难看得出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:正数都大于0,负数都小于0,正数大于一切负数.因为正数都大于0,反过来,大于0的数都是正数,因此,我们可以用,表示是正数;反之,知道是正数也可以表示为。同理,,表示是负数;反之是负数也可以表示为。3.正常见几种错误1)没有方向2)没有原点3)单位长度不统一篇9:七年级下册湘教版数学教案1.1生活中的立体图形(一)教学目标1.知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处2.能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。3.情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。教学重点:认识一些基本的几何体,并能描述这些几何体的特征教学难点:描述几何体的特征,对几何体进行分类。教学过程:一.设疑自探1.创设情景,导入新课在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?2.学生设疑让学生自身先思考再提问3.教师整理并出示自探题目①生活常见的几何体有那些?②这些几何体有什么特征③圆柱体与棱柱体有什么的相同之处和不同之处④圆柱体与圆锥体有什么的相同之处和不同之处⑤棱柱的分类⑥几何体的分类4.学生自探(并有简明的自学方法指导)举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?说说它们的区别二.解疑合探1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探2.对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所明确提出的问题)四.利用拓展:1.引导学生自编习题。请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征2.教师出示利用拓展题。(要根据教材内容尽可能要试题类型全面且有代表性)3.课堂小结4.作业布置五.教后反思1.1生活中的立体图形(二)教学目标1.知识:认识点、线、面的运动后会产生什么的几何体2.能力:通过点、线、面的运动的认识几何体的产生什么3.情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。教学重点:几何体是什么运动形成的教学难点:对“面动成体”的理解教学过程:一.设疑自探1.创设情景,导入新课我们上节课认识了生活中的基本几何体,它们是由什么形成的呢?2.学生设疑点动会生成什么几何体?线动会生成什么几何体?面动会生成什么几何体?3.教师整理并出示自探题目教师根据学生的設疑情况梳理、归纳、细化得出自探题目(自探要求)4.学生自探(讨论)二.解疑合探举例分析那些几何体由什么运动形成的?那些图形运动可以形成什么几何体?三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所明确提出的问题)四.利用拓展:1.引导学生自编习题。2.教师出示利用拓展题。(要根据教材内容尽可能要试题类型全面且有代表性)3.课堂小结4.作业布置五.教后反思1.2展开与折叠教学目标:1.通过折叠棱柱,发展学生空间观念,积累数学活动经验.2.了解棱柱的相关概念,认识棱柱的某些特性.教学重点:棱柱的特性.教学难点:某些平面图形是否可以折叠成棱柱的思索.教学过程:一.设疑自探1.创设情景,导入新课我们已经学过了一些几何体,它们是由什么组成的?它的展开图形是什么样?一个平面图形可以折叠成什么样的几何体呢?2.让学生拿出各自制作的三棱柱,四棱柱,五棱柱,通过观察和测量回答:(1)三棱柱的上、下底面都一样吗?它们各有几条边?四棱柱,五棱柱呢?(2)三棱柱有几个侧面?侧面是什么图形?四棱柱,五棱柱呢?(3)这三种棱柱侧面的个数与地面多边形的边数有什么关系?(4)三棱柱有几条恻棱?它们的长度之间有什么关系?四棱柱,五棱柱呢?结合同学们的回答,共同总结出棱柱的性质:棱柱的所有侧棱都相等;棱柱的上、下底面是相同的图形;侧面都是长方形.3.课堂练习:P111.4.展示正六棱柱模型.(底面边长都是5厘米,侧棱长4厘米)二.解疑合探(1)这个六棱柱一共有多少个面?它们分别是什么形状?那些面的形状、面积完全相同?(2)这个六棱柱一共有多少条棱?它们的长度分别是多少?展示下列图形:先想一想,再折一折,哪些图形可以围成正方体?哪些图形不能围成正方体?结合以上问题,全班进一步分组讨论:你能否指出有什么特征的平面图形可以折成正方体?什么样的图形不能?(教师参与小组讨论,并进行适当指导)总结结论:凡符合以上基本图形或变式图形的平面图形都可以折叠成正方体.三.质疑再探:上例中为什么是旋转90度?探索并思考:什么样的平面图形可以折叠成三棱柱,四棱柱,五棱柱?进一步思考什么样的平面图形可以折叠成棱柱?四.利用拓展:1.课堂练习P11想一想2.小结①.棱柱的相关概念及特征②.什么样的平面图形叠成三棱柱,四棱柱,五棱柱等.③作业P10习题1.3各人用纸制作一个完整的正方体以备下节课使用.1.3截一个几何体教学目标:1.认知目标:通过用一个平面去截一个正方体的切截活动过程,掌握空间图形与截面的关系,发展学生的空间观念,发展几何直觉。2.能力目标:通过学生参与对实物有限次的切截活动和用操作探索型课件进行的无限次的切截活动的过程,使学生经历观察、猜想、实际操作验证、推理等数学活动过程,发展学生的动手操作、自主探究、合作交流和分析归纳能力。3.情感目标:通过以教师为主导,引导学生观察发现、大胆猜想、动手操作、自主探究、合作交流,使学生在合作学习中体验到:数学活动充满着探索和创造。使学生获得成功的体验,加强自信心,提升学习数学的兴趣。教学的重点:引导学生用一个平面去截一个正方体的切截活动,体会截面和几何体的关系,充分让学生动手操作、自主探索、合作交流。教学的难点:从切截活动中发现规律,并能用自身的语言来表达。能应用规律来解决问题。课程过程:一.设疑自探1.创设情景,导入新课复习面的分类和面面相交的结果.集体回答或发表个人见解.为理解截面的边数作铺垫.2.学生探索由实物引入截(切)面的意义.用教具演示,将一个几何体切开得到截(切)面,让学生观察这两个面的特点.了解到这两个截面完全一样的.自然过渡到用一个平面去截正方体.问题的明确提出:“你注意到了吗?妈妈在将黄瓜切成一片片时,得到的截面是什么样的?…,如果用一个平面去截一个正方体得到的截面可又将是怎样的呢?分组讨论,比一比那一组的结论多”激发竞争意识.实施“想—做—想”的学习策略,让学生先想一想,并把猜想的结果记录下来,的猜想.培养学生的想象力.分组实践操作:“与同伴交流,看看别人截处的面是什么?他为什么得到与你不同的截面?他是怎样得到的?你还能截得什么样的截面?”比一比那一组讨论的结果与实践一致的多.表扬表现好的.培养集体荣誉感.分组通过实践操作证实小组的讨论的结果,发表、展示自身的研究成果.(由于时间关系,选择有代表性的小组展示)培养学生的合作交流能力、对问题的探究能力及表达能力和竞争意识.二.解疑合探帮助学生完成由实际体验到空间想象的过渡,提升想象能力.并总结各种截面是如何截出来的,它们有什么规律.观察,想象,思考截面的边那些面相交的来.新问题:“刚才切、截一个正方体就得多个不同的截面,那如果截一个圆柱体呢?或是截一个其它棱柱体呢?你又会得到一些什么样的截面?”动手操作、探究、交流.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所明确提出的问题)四.利用拓展练习、作业布置、解答课堂练习.学生能独立完成课堂练习.1.4从不同方向看教学目标:1.经历“从不同方向观察物体”的活动过程,发展空间思维,能在与他人交流的过程中,合理清晰地表达自身的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不一样的结果.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.教学重点:识别简单物体的三视图,会画立方体及其简单组合体的三视图.教学难点:画立方体及其简单组合体的三视图.篇10:七年级下册数学教案有哪些用关系式表示的变量间关系【学习目标】1.经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。2.能根据具体情景,用关系式表示某些变量之间的关系。3.能根据关系式求值,初步体会自变量和因变量的数值对应关系。【学习方法】自主探究与小组合作交流相结合.【学习重难点】重点:1.找问题中的自变量和因变量。2.根据关系式找自变量和因变量之间的对应关系。难点:根据关系式找自变量和因变量之间的对应关系。【学习过程】模块一预习反馈一.学习准备(1)如果△ABC的底边长为a,高为h,那面积S△ABC=________.(2)如果梯形的上底、下底长分别为a、b,高为h,那面积S梯形=_________(3)圆柱的底面半径为r,高为h,面积S圆柱=_____________V圆柱=__________;二.教材精读1.如图所示,△ABC底边BC上的高是6厘米.当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.在这个变化过程中,自变量是________,因变量是_______.如果三角形的底边长为x(厘米),那三角形的面积y(厘米2)可以表示为__________,当底边长从12厘米变化到3厘米时,三角形的面积从________厘米2变化到_______厘米2.归纳:表示变量之间关系的另一种方法:利用。我们可以根据任何一个的值求出相应的应变量的。2.如图所示,圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥的体积也随之而发生了变化。(1)在这个变化过程中,自变量是____________,因变量是______________.(2)如果圆锥底面半径为r(厘米),那圆锥的体积V(厘米3)与r的关系式是_____________(3)当底面半径由1厘米变化到10厘米时,圆锥的体积由______厘米3变化到______厘米3.模块二合作探究3.如图所示,长方形的长为12,宽为x,则(1)若设长方形的面积S,则面积S与宽x之间有什么关系?(2)若用C表示长方形的周长,则周长C与宽x之间有什么关系?(3)当x增多一倍时,长方形的面积S是如何变化的?周长C又是如何变化的?说一说你为什么会这样认为?模块三形成提升1.某种长途电话收费方式为按时收费,前3分钟收费1.8元,以后每加一分钟收费1元,求:(1)当时间t3分钟时的电话费y(元)与t(分)之间的关系.(2)计算当时间分别为5分、10分、30分、50分的电话费。2.(1)家居用电的二氧化碳排放量可以用关系式表示为_____________,其中的字母表示________________。(2)在上述关系式中,耗电量每增多1KW·h,二氧化碳排放量增多___________。当耗电量从1KW·h增多到100KW·h时,二氧化碳排放量从_______增多到_____________。模块四小结反思本课知识1.会用关系式表示两个变量之间的关系;2.能利用关系式求值。二.我的困惑:篇11:北师七年级下册数学教案北师七年级下册数学教案第一单元位置与方向一.教材分析:学生在日常生活中对东、南、西、北等方向的知识已经积累了一些感性的经验,并通过第一学年的学习,已经会用上、下、左、右、前、后描述物体的相对位置。本单元在此基础上,使学生学习辨认东、南、西、北、东北、西北、东南和西南八个方向,并认识简单的路线图。本单元教材在编排上有下面几个特点:依照儿童空间方位认知顺序进行编排,提供丰富的生活和活动情境,帮助学生辨认方向。二.单元教学目标:1.通过现实的数学活动,培养学生辨认方向的意识,进一步发展空间观念。2.结合具体情境,使学生认识东、南、西、北、东北、西北、东南和西南八个方向,能用给定的一个方向(东、南、西或北)辨认其余的七个方向,并能用这些词语描述物体所在的方向。3.使学生会看简单的路线图,并能描述行走的路线。第1课时认识东、南、西、北方向教学内容:教材第2至3页例1及练习一第1题。教学目标:1.通过活动体验使学生认识东、南、西、北四个方向,能用给定的一个方向辨认其余的三个方向,并能用这些词语描述物体所在的方向。2.通过大量的操作活动,让学生形成辨认东、西、南、北等方向的技能,培养学生的观察能力,发展学生的空间想象能力。3.在观察主题图时,渗透爱国主义教育,激发学生的学习热情。教学重难点:会在实景中辨认东、南、西、北,并能利用这些词语来描绘物体所在的方向。教学过程:一.情境导入同学们,你们知道的奥运会在哪里举行吗?这是我们祖国的骄傲,也是全国人民努力的结果,大家想不想看看首都北京的美景呢?幼儿园中班数学教案活动目标:1.幼儿通过合作交流学习7的分解与组成,感知数的分和的有序性。2.让幼儿在自主探索与合作交流中共同学习、发展,充分体验小组互助、合作学习的快乐。活动准备:1.不同大小、颜色、形状的西瓜、桃子的图片若干,不同种类的拼插玩具和废旧材料。2.音乐磁带:《我的朋友在哪里》3.颜色或图案不同的数字1-6的卡片。4.7的分和式记录表。活动过程:一.情境创设1.拍手游戏:教师采用问答的方式与幼儿一起复习6的组成。师:嗨嗨,我的1球碰几球?幼儿:嗨嗨,你的1球碰5球。2.每组组长自报家门,教师为每组贴上相应的羊羊贴画。3.师:我们每只羊羊队的小朋友都很好,今天老师还特别为你们请来了一个朋友(出示数字7),让数字7作裁判,评判出究竟是哪只羊羊队取得最后的胜利。二.羊羊大战1.数字7裁判为我们每只羊羊队的小朋友都准备了7件物品。(出示西瓜、桃子、拼插玩具和一些废旧材料),但数字7可给你们提要求了:(1)请每组幼儿拿到7件物品后不要乱动,先观察这些物品有哪些相同和不同之处,再把这些物品分成俩份,并说出你分的依据是什么?转动脑筋,看看哪组分得方法多?(2)分完后要把你分的结果填写到记录表上。2.幼儿分组合作进行分解、记录,教师巡视并作个别指导。喜羊羊队材料:桃子图片;美羊羊队材料:西瓜图片;沸羊羊队材料:金鱼图片;懒羊羊队材料:拼插玩具;暖羊羊队材料:奶盒和奶瓶;慢羊羊队材料:各种纸盒(牙膏盒、药盒、烟盒)。等等3.幼儿汇报美羊羊队:老师,我们组按西瓜的大小把7分成了1和6.喜羊羊队:我们组按桃子的种类把7分成了2和5.暖羊羊队:我门组的材料都是有关奶的饮料,按盒子的和瓶子的把7分成了3和4;3.教师小结。引导幼儿归纳7的分解方法有多少种。4.数字7裁判评出优胜奖,给予鼓励。三.游戏:我的朋友在哪里1.教师发给每位幼儿一张数字
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《台阶轴车削加工》课件
- 《悦纳自己欣赏他人》课件
- 《零件测绘方法》课件
- 《飞机疲劳强度计算》课件
- 2025年福建货运从业资格证考试题及答案大全解析
- 探索地球:地貌之奇妙旅程
- 优化购物体验报告模板
- 带着幸福感去做老师等4则
- 2025年电动晾衣机项目合作计划书
- 小议美国卡登幼儿教育对我国幼儿教育的启示
- 创新创业实务PPT全套完整教学课件
- 工业企业电源快速切换装置设计配置导则
- 某有限公司双螺纹偏转型防松防盗螺母商业计划书
- 新版冀教版(冀人版)科学五年级下册全册教案
- 年产3万吨喷气纺、3万吨气流纺生产线项目节能评估报告
- 2022年03月江苏无锡市新吴区新安街道城管队员招考聘用10人笔试题库含答案解析
- 农药经营管理知识培训专家讲座
- 成品仓库管理培训手册成品库人员岗位职责与作业指导书
- 外研版九年级英语上册单元测试题全套带答案
- 《自主创新对于钢结构发展的重要性》2400字
- 2023年云南省贵金属新材料控股集团有限公司招聘笔试题库及答案解析
评论
0/150
提交评论