




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020-2021年四川省成都市中考数学试卷及答案-2021年四川省成都市中考数学试卷及答案·最新说明:文档整理了,2020年至2021年度,成都市中考数学试卷及答案内容,试卷包含了详细的题解和分析,望对老师和同学们有所帮助。四川省2020年初中毕业生学业水平考试(成都卷)数学试题卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是()A.﹣2 B.1 C.2 D.12.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为()A.3.6×103 B.3.6×104 C.3.6×105 D.36×1044.(3分)(2020•成都)在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是()A.(3,0) B.(1,2) C.(5,2) D.(3,4)5.(3分)(2020•成都)下列计算正确的是()A.3a+2b=5ab B.a3•a2=a6 C.(﹣a3b)2=a6b2 D.a2b3÷a=b36.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A.5人,7人 B.5人,11人 C.5人,12人 D.7人,11人7.(3分)(2020•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于12BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BDA.2 B.3 C.4 D.68.(3分)(2020•成都)已知x=2是分式方程kx+x−3A.3 B.4 C.5 D.69.(3分)(2020•成都)如图,直线l1∥l2∥l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A.2 B.3 C.4 D.1010.(3分)(2020•成都)关于二次函数y=x2+2x﹣8,下列说法正确的是()A.图象的对称轴在y轴的右侧 B.图象与y轴的交点坐标为(0,8) C.图象与x轴的交点坐标为(﹣2,0)和(4,0) D.y的最小值为﹣9二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x2+3x=.12.(4分)(2020•成都)一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为.13.(4分)(2020•成都)如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为.14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x两,1只羊值金y两,则可列方程组为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−3|(2)解不等式组:4(x−1)≥x+2,①16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x217.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)19.(10分)(2020•成都)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tanB=43,求⊙(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2020•成都)已知a=7﹣3b,则代数式a2+6ab+9b2的值为.22.(4分)(2020•成都)关于x的一元二次方程2x2﹣4x+m−32=0有实数根,则实数m23.(4分)(2020•成都)如图,六边形ABCDEF是正六边形,曲线FA1B1C1D1E1F1…叫做“正六边形的渐开线”,FA1,A1B1,B1C1,C1D1,D1E1,E1F1,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当24.(4分)(2020•成都)在平面直角坐标系xOy中,已知直线y=mx(m>0)与双曲线y=4x交于A,C两点(点A在第一象限),直线y=nx(n<0)与双曲线y=−1x交于B,D两点.当这两条直线互相垂直,且四边形ABCD的周长为102时,点25.(4分)(2020•成都)如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为,线段DH长度的最小值为.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:x(元/件)1213141516y(件)120011001000900800(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.(10分)(2020•成都)在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF•FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求ABBC28.(12分)(2020•成都)在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
四川省2020年初中毕业生学业考试(成都卷)数学参考答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是()A.﹣2 B.1 C.2 D.1【解答】解:﹣2的绝对值为2.故选:C.2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.【解答】解:从左面看是一列2个正方形.故选:D.3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为()A.3.6×103 B.3.6×104 C.3.6×105 D.36×104【解答】解:36000=3.6×104,故选:B.4.(3分)(2020•成都)在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是()A.(3,0) B.(1,2) C.(5,2) D.(3,4)【解答】解:将点P(3,2)向下平移2个单位长度所得到的点坐标为(3,2﹣2),即(3,0),故选:A.5.(3分)(2020•成都)下列计算正确的是()A.3a+2b=5ab B.a3•a2=a6 C.(﹣a3b)2=a6b2 D.a2b3÷a=b3【解答】解:A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a3•a2=a5,原计算错误,故此选项不符合题意;C、(﹣a3b)2=a6b2,原计算正确,故此选项符合题意;D、a2b3÷a=ab3,原计算错误,故此选项不符合题意.故选:C.6.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A.5人,7人 B.5人,11人 C.5人,12人 D.7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人.故选:A.7.(3分)(2020•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于12BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BDA.2 B.3 C.4 D.6【解答】解:由作图知,MN是线段BC的垂直平分线,∴BD=CD,∵AC=6,AD=2,∴BD=CD=4,故选:C.8.(3分)(2020•成都)已知x=2是分式方程kx+x−3A.3 B.4 C.5 D.6【解答】解:把x=2代入分式方程得:k2解得:k=4.故选:B.9.(3分)(2020•成都)如图,直线l1∥l2∥l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A.2 B.3 C.4 D.10【解答】解:∵直线l1∥l2∥l3,∴ABBC∵AB=5,BC=6,EF=4,∴56∴DE=10故选:D.10.(3分)(2020•成都)关于二次函数y=x2+2x﹣8,下列说法正确的是()A.图象的对称轴在y轴的右侧 B.图象与y轴的交点坐标为(0,8) C.图象与x轴的交点坐标为(﹣2,0)和(4,0) D.y的最小值为﹣9【解答】解:∵二次函数y=x2+2x﹣8=(x+1)2﹣9=(x+4)(x﹣2),∴该函数的对称轴是直线x=﹣1,在y轴的左侧,故选项A错误;当x=0时,y=﹣8,即该函数与y轴交于点(0,﹣8),故选项B错误;当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确;故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(4分)(2020•成都)一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为m>12【解答】解:∵一次函数y=(2m﹣1)x+2中,函数值y随自变量x的增大而增大,∴2m﹣1>0,解得m>1故答案为:m>113.(4分)(2020•成都)如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为30°.【解答】解:∵OB=OC,∠B=55°,∴∠BOC=180°﹣2∠B=70°,∵∠AOB=50°,∴∠AOC=∠AOB+∠BOC=70°+50°=120°,∵OA=OC,∴∠A=∠OCA=180°−120°故答案为:30°.14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x两,1只羊值金y两,则可列方程组为5x+2y=102x+5y=8【解答】解:设1头牛值金x两,1只羊值金y两,由题意可得,5x+2y=102x+5y=8故答案为:5x+2y=102x+5y=8三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−3|(2)解不等式组:4(x−1)≥x+2,①【解答】解:(1)原式=2×32+=3+4+2=3;(2)4(x−1)≥x+2,①由①得,x≥2;由②得,x<4,故此不等式组的解集为:2≤x<4.16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x2【解答】解:原式=x+3−1x+3=x﹣3,当x=3+2原式=217.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有180人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为126°;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【解答】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1﹣20%﹣15%﹣30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;(3)列表如下:甲乙丙丁甲一(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)一(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)一(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)一∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)=218.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【解答】解:过点D作DE⊥AB于点E,根据题意可得四边形DCBE是矩形,∴DE=BC,BE=DC=61,在Rt△ADE中,∵∠ADE=45°,∴AE=DE,∴AE=DE=BC,在Rt△BDE中,∠BDE=22°,∴DE=BE∴AB=AE+BE=DE+CD=152.5+61≈214(米).答:观景台的高AB的值约为214米.19.(10分)(2020•成都)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.【解答】解:(1)∵反比例函数y=mx(x>0)的图象经过点∴k=3×4=12,∴反比例函数的表达式为y=12(2)∵直线y=kx+b过点A,∴3k+b=4,∵过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,∴B(−bk,0),C(0,∵△AOB的面积为△BOC的面积的2倍,∴12×4×|−bk|=2×1∴b=±2,当b=2时,k=2当b=﹣2时,k=2,∴直线的函数表达式为:y=23x+2,y=220.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tanB=43,求⊙(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.【解答】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tanB=4∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6﹣OC)2=OC2+4,∴OC=8故⊙O的半径为83(3)连接OD,DE,由(1)可知:△ACO≌△ADO,∴∠ACO=∠ADO=90°,∠AOC=∠AOD,又∵CO=DO,OE=OE,∴△COE≌△DOE(SAS),∴∠OCE=∠OED,∵OC=OE=OD,∴∠OCE=∠OEC=∠OED=∠ODE,∴∠DEF=180°﹣∠OEC﹣∠OED=180°﹣2∠OCE,∵点F是AB中点,∠ACB=90°,∴CF=BF=AF,∴∠FCB=∠FBC,∴∠DFE=180°﹣∠BCF﹣∠CBF=180°﹣2∠OCE,∴∠DEF=∠DFE,∴DE=DF=CE,∴AF=BF=DF+BD=CE+BD.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2020•成都)已知a=7﹣3b,则代数式a2+6ab+9b2的值为49.【解答】解:∵a=7﹣3b,∴a+3b=7,∴a2+6ab+9b2=(a+3b)2=72=49,故答案为:49.22.(4分)(2020•成都)关于x的一元二次方程2x2﹣4x+m−32=0有实数根,则实数m的取值范围是m【解答】解:∵关于x的一元二次方程2x2﹣4x+m−3∴△=(﹣4)2﹣4×2×(m−32)=16﹣8解得:m≤7故答案为:m≤723.(4分)(2020•成都)如图,六边形ABCDEF是正六边形,曲线FA1B1C1D1E1F1…叫做“正六边形的渐开线”,FA1,A1B1,B1C1,C1D1,D1E1,E1F1,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线【解答】解:FA1的长A1B1B1C1C1D1D1E1E1F1∴曲线FA1B1C1D1E1F1的长度=π3+故答案为7π.24.(4分)(2020•成都)在平面直角坐标系xOy中,已知直线y=mx(m>0)与双曲线y=4x交于A,C两点(点A在第一象限),直线y=nx(n<0)与双曲线y=−1x交于B,D两点.当这两条直线互相垂直,且四边形ABCD的周长为102时,点A的坐标为(2,22)或(22【解答】解:联立y=mx(m>0)与y=4x并解得:x=±2my=±2m,故点联立y=nx(n<0)与y=−1x同理可得:点D(−1n∵这两条直线互相垂直,则mn=﹣1,故点D(m,−1m),则点B(−m则AD2=(2m−m)2+(2m+1m同理可得:AB2=5m+5m=则AB=14×102,即AB2=解得:m=2或12故点A的坐标为(2,22)或(22,2),故答案为:(2,22)或(22,2).25.(4分)(2020•成都)如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为32,线段DH长度的最小值为13−2【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ∥PE,∴△MFQ∽△MEP,∴MFME∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=AE2+ME2∴PQ=32,∵MF∥ON∥BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=1∴OD=D∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM∵DH≥OD﹣OH,∴DH≥13∴DH的最小值为13−故答案为32,13−五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:x(元/件)1213141516y(件)120011001000900800(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.【解答】解:(1)∵y与x满足一次函数的关系,∴设y=kx+b,将x=12,y=1200;x=13,y=1100代入得:1200=12k+b1100=13k+b解得:k=−100b=2400∴y与x的函数关系式为:y=﹣100x+2400;(2)设线上和线下月利润总和为m元,则m=400(x﹣2﹣10)+y(x﹣10)=400x﹣4800+(﹣100x+2400)(x﹣10)=﹣100(x﹣19)2+7300,∴当x为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.27.(10分)(2020•成都)在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF•FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求ABBC【解答】解:(1)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴BC=BF,∠FBE=∠EBC,∵BC=2AB,∴BF=2AB,∴∠AFB=30°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFB=∠CBF=30°,∴∠CBE=12∠(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△FAB∽△EDF,∴AFDE∴AF•DF=AB•DE,∵AF•DF=10,AB=5,∴DE=2,∴CE=DC﹣DE=5﹣2=3,∴EF=3,∴DF=E∴AF=105=∴BC=AD=AF+DF=25+5=(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=12AD=∵BC=BF,∴NF=12∵∠NFG=∠AFB,∠NGF=∠BAF=90°,∴△NFG∽△BFA,∴NGAB设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=43∴BF=BG+GF=2x+43x=∴ABBC28.(12分)(2020•成都)在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣4).∵将C(0,﹣2)代入得:4a=2,解得a=1∴抛物线的解析式为y=12(x+1)(x﹣4),即y=12x(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,∴AK∥DG,∴△AKE∽△DFE,∴DFAK∴S1设直线BC的解析式为y=kx+b,∴4k+b=0b=−2,解得k=∴直线BC的解析式为y=12∵A(﹣1,0),∴y=−12−∴AK=5设D(m,12m2−32m﹣2),则F∴DF=12m−2−12m∴S1S2∴当m=2时,S1S2(3)符合条件的点P的坐标为(689,34∵l∥BC,∴直线l的解析式为y=12设P(a,a2①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,∵A(﹣1,0),C(0,﹣2),B(4,0),∴AC=5,AB=5,BC=25,∵AC2+BC2=AB2,∴∠ACB∵△PQB∽△CAB,∴PQPB=ACBC=∴∠MQP+∠MPQ=90°,∠MPQ+∠PBN=90°,∴∠MQP=∠PBN,∴△QPM∽△PBN,∴QMPN∴QM=a4,PM=12(a∴MN=a﹣2,BN﹣QM=a﹣4−a4∴Q(34a,a将点Q的坐标代入抛物线的解析式得12×(34解得a=0(舍去)或a=68∴P(689②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(54a,2).此时点P的坐标为(6+2
四川省2021年初中毕业生学业水平考试(成都卷)数学试题卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)﹣7的倒数是()A.﹣ B. C.﹣7 D.72.(3分)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.3.(3分)2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105 B.3×106 C.3×107 D.3×1084.(3分)在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2) B.(4,2) C.(﹣4,﹣2) D.(4,﹣2)5.(3分)下列计算正确的是()A.3mn﹣2mn=1 B.(m2n3)2=m4n6 C.(﹣m)3•m=m4 D.(m+n)2=m2+n26.(3分)如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD7.(3分)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34 B.35 C.36 D.408.(3分)分式方程+=1的解为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣19.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A. B. C. D.10.(3分)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4π B.6π C.8π D.12π二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)因式分解:x2﹣4=.12.(4分)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.13.(4分)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.14.(4分)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.16.(6分)先化简,再求值:(1+)÷,其中a=﹣3.17.(8分)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021﹣2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.课程人数篮球m足球21排球30乒乓球n根据图表信息,解答下列问题:(1)分别求出表中m,n的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.18.(8分)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D与N在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,D为AB延长线上一点,连接CD,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为,△ABC的面积为2,求CD的长;(3)在(2)的条件下,E为⊙O上一点,连接CE交线段OA于点F,若=,求BF的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.22.(4分)若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.23.(4分)如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.24.(4分)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.25.(4分)我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.(8分)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?27.(10分)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.
四川省2021年初中毕业生学业考试(成都卷)数学参考答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.【解答】解:∵﹣7×(﹣)=1,∴﹣7的倒数是:﹣.故选:A.2.【解答】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.3.【解答】解:3亿=300000000=3×108.故选:D.4.【解答】解:点M(﹣4,2)关于x轴对称的点的坐标是(﹣4,﹣2).故选:C.5.【解答】解:A.3mn﹣2mn=mn,故本选项不合题意;B.(m2n3)2=m4n6,故本选项符合题意;C.(﹣m)3•m=﹣m4,故本选项不合题意;D.(m+n)2=m2+2mn+n2,故本选项不合题意;故选:B.6.【解答】解:由四边形ABCD是菱形可得:AB=AD,∠B=∠D,A、添加BE=DF,可用SAS证明△ABE≌△ADF,故不符合题意;B、添加∠BAE=∠DAF,可用ASA证明△ABE≌△ADF,故不符合题意;C、添加AE=AD,不能证明△ABE≌△ADF,故符合题意;D、添加∠AEB=∠AFD,可用AAS证明△ABE≌△ADF,故不符合题意;故选:C.7.【解答】解:把已知数据按照由小到大的顺序重新排序后为30,34,36,40,∴中位数为(34+36)÷2=35.故选:B.8.【解答】解:分式方程整理得:﹣=1,去分母得:2﹣x﹣1=x﹣3,解得:x=2,检验:当x=2时,x﹣3≠0,∴分式方程的解为x=2.故选:A.9.【解答】解:设甲需持钱x,乙持钱y,根据题意,得:,故选:A.10.【解答】解:∵正六边形的外角和为360°,∴每一个外角的度数为360°÷6=60°,∴正六边形的每个内角为180°﹣60°=120°,∵正六边形的边长为6,∴S阴影==12π,故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).12.【解答】解:由题意可知,直角三角形中,一条直角边的平方=36,一直角边的平方=64,则斜边的平方=36+64=100.故答案为100.13.【解答】解:由题意得:△=b2﹣4ac=4﹣4k=0,解得k=1,故答案为1.14.【解答】解:过点D作DH⊥AB,则DH=1,由题目作图知,AD是∠CAB的平分线,则CD=DH=1,∵△ABC为等腰直角三角形,故∠B=45°,则△DHB为等腰直角三角形,故BD=HD=,则BC=CD+BD=1+,故答案为:1+。三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2+1﹣2×+﹣1=2+1﹣+﹣1=2;(2)由①得:x>2.5,由②得:x≤4,则不等式组的解集为2.5<x≤4.16.【解答】解:原式==,当a=﹣3时,原式=.17.【解答】解:(1)30÷=120(人),即参加这次调查的学生有120人,选择篮球的学生m=120×30%=36,选择乒乓球的学生n=120﹣36﹣21﹣30=33;(2)360°×=63°,即扇形统计图中“足球”项目所对应扇形的圆心角度数是63°;(3)2000×=550(人),答:估计其中选择“乒乓球”课程的学生有550人.18.【解答】解:延长BC交MN于点H,CD=BE=3.5,设MH=x,∵∠MEC=45°,故EH=x,在Rt△MHB中,tan∠MBH==≈0.65,解得x=6.5,则MN=1.6+6.5=8.1≈8(米),∴电池板离地面的高度MN的长约为8米。19.【解答】(1)∵一次函数y=x+的图象经过点A(a,3),∴a+=3,解得:a=2,∴A(2,3),将A(2,3)代入y=(x>0),得:3=,∴k=6,∴反比例函数的表达式为y=;(2)如图,过点A作AE⊥x轴于点E,在y=x+中,令y=0,得x+=0,解得:x=﹣2,∴B(﹣2,0),∵E(2,0),∴BE=2﹣(﹣2)=4,∵△ABD是以BD为底边的等腰三角形,∴AB=AD,∵AE⊥BD,∴DE=BE=4,∴D(6,0),设直线AD的函数表达式为y=mx+n,∵A(2,3),D(6,0),∴,解得:,∴直线AD的函数表达式为y=﹣x+,联立方程组:,解得:(舍去),,∴点C的坐标为(4,).20.【解答】(1)证明:连接OC,如图:∵AB为⊙O的直径,∴∠ACB=90°,∠A+∠ABC=90°,∵OB=OC,∴∠ABC=∠BCO,又∠BCD=∠A,∴∠BCD+∠BCO=90°,即∠ACB=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)过C作CM⊥AB于M,过B作BN⊥CD于N,如图:∵⊙O的半径为,∴AB=2,∵△ABC的面积为2,∴AB•CM=2,即×2•CM=2,∴CM=2,Rt△BCM中,∠BCM=90°﹣∠CBA,Rt△ABC中,∠A=90°﹣∠CBA,∴∠BCM=∠A,∴tan∠BCM=tanA,即=,∴=,解得BM=﹣1,(BM=+1已舍去),∵∠BCD=∠A,∠BCM=∠A,∴∠BCD=∠BCM,而∠BMC=∠BNC=90°,BC=BC,∴△BCM≌△BCN(AAS),∴CN=CM=2,BN=BM=﹣1,∵∠DNB=∠DMC=90°,∠D=∠D,∴△DBN∽△DCM,∴==,即==,解得DN=2﹣2,∴CD=DN+CN=2;(3)过C作CM⊥AB于M,过E作EH⊥AB于H,连接OE,如图:∵CM⊥AB,EH⊥AB,∴==,∵=,∴==,由(2)知CM=2,BM=﹣1,∴HE=1,MF=2HF,Rt△OEH中,OH===2,∴AH=OA﹣OH=﹣2,设HF=x,则MF=2x,由AB=2可得:BM+MF+HF+AH=2,∴(﹣1)+2x+x+(﹣2)=2,解得:x=1,∴HF=1,MF=2,∴BF=BM+MF=(﹣1)+2=+1.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵在正比例函数y=kx中,y的值随着x值的增大而增大,∴k>0,∴点P(3,k)在第一象限.故答案为:一.22.【解答】解:∵m是一元二次方程x2+2x﹣1=0的根,∴m2+2m﹣1=0,∴m2+2m=1,∵m、n是一元二次方程x2+2x﹣1=0的两个根,∴m+n=﹣2,∴m2+4m+2n=m2+2m+2m+2n=1+2×(﹣2)=﹣3.故答案为:﹣3.23.【解答】解:设直线AB交y轴于C,过O作OD⊥AB于D,如图:在y=x+中,令x=0得y=,∴C(0,),OC=,在y=x+中令y=0得x+=0,解得x=﹣2,∴A(﹣2,0),OA=2,Rt△AOC中,tan∠CAO===,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×=,∵OD⊥AB,∴AD=BD=,∴AB=2,故答案为:2.24.【解答】解:如图,过点F作FT⊥AD于T,则四边形ABFT是矩形,连接FN,EN,设AC交EF于J.∵四边形ABFT是矩形,∴AB=FT=4,BF=AT,∵四边形ABCD是矩形,∴AB=CD=4,AD=BC=8,∠B=∠D=90°∴AC==4,∵∠TFE+∠AEJ=90°,∠DAC+∠AEJ=90°,∴∠TFE=∠DAC,∵∠FTE=∠D=90°,∴△FTE∽△ADC,∴==,∴==,∴TE=2,EF=2,∴BF=AT=AE﹣ET=3﹣2=1,设A′N=x,∵NM垂直平分线段EF,∴NF=NE,∴12+(4﹣x)2=32+x2,∴x=1,∴FN===,∴MN===,故答案为:1,。25.【解答】解:该三角形的顺序旋转和与逆序旋转和的差为(4x+2z+3y)﹣(3x+2y﹣4z)=x+y﹣2z,画树状图为:共有12种等可能的结果,其中此三角形的顺序旋转和与逆序旋转和的差都小于4的结果数为9,所以三角形的顺序旋转和与逆序旋转和的差都小于4的概率==.故答案为.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.【解答】解:(1)设每个B型点位每天处理生活垃圾x吨,则每个A型点位每天处理生活垃圾(x+7)吨,根据题意可得:12(x+7)+10x=920,解得:x=38,答:每个B型点位每天处理生活垃圾38吨;(2)设需要增设y个A型点位才能当日处理完所有生活垃圾,由(1)可知:《条例》施行前,每个A型点位每天处理生活垃圾45吨,则《条例》施行后,每
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合同无效由哪些部门确认
- 2025年变更劳动合同协议 副本
- 2024年锡林郭勒盟锡林浩特市医疗保障局选聘社会监督员笔试真题
- 2024年邳州市市属事业单位考试真题
- 2024年柳州市市属事业单位考试真题
- 2024年湖北省中医院招聘聘用工作人员真题
- 2024年安庆皖江中等专业学校专任教师招聘真题
- 2024年福建福清元载中学教师招聘真题
- 2024年北京农业职业学院招聘真题
- 2024年安国市职业技术教育中心专任教师招聘真题
- 社会学概论(第四版)第10章社会组织
- DB37-T 5225-2022民用建筑太阳能热水系统一体化应用技术标准
- DB44∕T 1988-2017 广东终身教育资历框架等级标准
- 巧用EXCEL建立合同管理台帐并动态管理合同
- 汽车吊接地比压计算
- 外架搭设悬挑板上方案
- 绿化机具操作标准作业规程
- 喜利得抗震支架解读ppt课件
- 小学数学课堂教学评价量表完整版
- 食堂加工流程图(3)
- 喜庆中国风十二生肖介绍PPT模板
评论
0/150
提交评论